Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(12): 2493-2511, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119035

RESUMO

Tinnitus affects roughly 15%-20% of the population while severely impacting 10% of those afflicted. Tinnitus pathology is multifactorial, generally initiated by damage to the auditory periphery, resulting in a cascade of maladaptive plastic changes at multiple levels of the central auditory neuraxis as well as limbic and non-auditory cortical centres. Using a well-established condition-suppression model of tinnitus, we measured tinnitus-related changes in the microcircuits of excitatory/inhibitory neurons onto layer 5 pyramidal neurons (PNs), as well as changes in the excitability of vasoactive intestinal peptide (VIP) neurons in primary auditory cortex (A1). Patch-clamp recordings from PNs in A1 slices showed tinnitus-related increases in spontaneous excitatory postsynaptic currents (sEPSCs) and decreases in spontaneous inhibitory postsynaptic currents (sIPSCs). Both measures could be correlated to the rat's behavioural evidence of tinnitus. Tinnitus-related changes in PN excitability were independent of changes in A1 excitatory or inhibitory cell numbers. VIP neurons, part of an A1 local circuit that can control the excitation of layer 5 PNs via disinhibitory mechanisms, showed significant tinnitus-related increases in excitability that directly correlated with the rat's behavioural tinnitus score. That PN and VIP changes directly correlated to tinnitus behaviour suggests an important role in A1 tinnitus pathology. Tinnitus-related A1 changes were similar to findings in studies of neuropathic pain in somatosensory cortex suggesting a common pathology of these troublesome perceptual impairments. Improved understanding between excitatory, inhibitory and disinhibitory sensory cortical circuits can serve as a model for testing therapeutic approaches to the treatment of tinnitus and chronic pain. KEY POINTS: We identified tinnitus-related changes in synaptic function of specific neuronal subtypes in a reliable animal model of tinnitus. The findings show direct and indirect tinnitus-related losses of normal inhibitory function at A1 layer 5 pyramidal cells, and increased VIP excitability. The findings are similar to what has been shown for neuropathic pain suggesting that restoring normal inhibitory function at synaptic inputs onto A1 pyramidal neurons (PNs) could conceptually reduce tinnitus discomfort.


Assuntos
Córtex Auditivo , Zumbido , Ratos , Animais , Peptídeo Intestinal Vasoativo , Córtex Auditivo/fisiologia , Neurônios/metabolismo , Células Piramidais/fisiologia
2.
J Neurosci Res ; 86(11): 2564-78, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18438941

RESUMO

A longstanding hypothesis is that tinnitus, the perception of sound without an external acoustic source, is triggered by a distinctive pattern of cochlear hair cell (HC) damage and that this subsequently leads to altered neural activity in the central auditory pathway. This hypothesis was tested by assessing behavioral evidence of tinnitus and spontaneous neural activity in the inferior colliculus (IC) after unilateral cochlear trauma. Chinchillas were assigned to four cochlear treatment groups. Each treatment produced a distinctive pattern of HC damage, as follows: acoustic exposure (AEx): sparse low-frequency inner hair cell (IHC) and outer hair cell (OHC) loss; round window cisplatin (CisEx): pronounced OHC loss mixed with some IHC loss; round window carboplatin (CarbEx): pronounced IHC loss without OHC loss; control: no loss. Compared with controls, all experimental groups displayed significant and similar psychophysical evidence of tinnitus with features resembling a 1-kHz tone. Contralateral IC spontaneous activity was elevated in the AEx and CisEx groups, which showed increased spiking and increased cross-fiber synchrony. A multidimensional analysis identified a subpopulation of neurons more prevalent in animals with tinnitus. These units were characterized by high bursting, low ISI variance, and within-burst peak spiking of approximately 1,000/sec. It was concluded that cochlear trauma in general, rather than its specific features, leads to multiple changes in central activity that underpin tinnitus. Particularly affected was a subpopulation ensemble of IC neurons with the described unique triad of features.


Assuntos
Cóclea/lesões , Colículos Inferiores/fisiopatologia , Zumbido/etiologia , Zumbido/fisiopatologia , Animais , Antineoplásicos/toxicidade , Carboplatina/toxicidade , Chinchila , Cisplatino/toxicidade , Condicionamento Operante , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Provocada por Ruído/fisiopatologia , Masculino
3.
Behav Neurosci ; 120(1): 188-95, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16492129

RESUMO

The study describes a novel method for tinnitus screening in rats by use of gap detection reflex procedures. The authors hypothesized that if a background acoustic signal was qualitatively similar to the rat's tinnitus, poorer detection of a silent gap in the background would be expected. Rats with prior evidence of tinnitus at 10 kHz (n = 14) exhibited significantly worse gap detection than controls (n = 13) when the gap was embedded in a background similar to their tinnitus. No differences between tinnitus and control rats were found with 16 kHz or broadband noise backgrounds, which helped to rule out explanations related to hearing loss or general performance deficits. The results suggest that gap detection reflex procedures might be effective for rapid tinnitus screening in rats.


Assuntos
Percepção Auditiva/fisiologia , Detecção de Sinal Psicológico/fisiologia , Zumbido/epidemiologia , Zumbido/fisiopatologia , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Masculino , Programas de Rastreamento/métodos , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA