Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Xenobiotica ; 38(7-8): 995-1021, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18668437

RESUMO

1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.


Assuntos
Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Neoplasias/metabolismo , Nucleosídeos/metabolismo , Viroses/metabolismo , Proteínas de Transporte de Nucleosídeo Equilibrativas/química , Humanos , Neoplasias/tratamento farmacológico , Nucleosídeos/uso terapêutico , Relação Estrutura-Atividade , Viroses/tratamento farmacológico
2.
Nucleosides Nucleotides Nucleic Acids ; 23(8-9): 1343-6, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15571255

RESUMO

Deoxycytidine kinase (dCK), is responsible for the phosphorylation of deoxynucleosides to the corresponding monophosphates using ATP or UTP as phosphate donors. Steady-state intrinsic fluorescence measurements were used to study interaction of dCK with substrates in the absence and presence of phosphate donors. Enzyme fluorescence quenching by its substrates exhibited unimodal quenching when excited at 295 nm. Binding of substrates induced conformational changes in the protein, suggesting that dCK can assume different conformational states with different substrates and may account for the observed differences in their specificity. dCK bound the substrates more tightly in the presence of phosphate donors and UTP is the preferred phosphate donor. Among the substrates tested, the antitumour drugs gemcitabine and cladribine were bound very tightly by dCK, yielding Kd values of 0.75 and 0.8 microM, respectively, in the presence of UTP.


Assuntos
Desoxicitidina Quinase/química , Desoxicitidina/análogos & derivados , Proteínas Recombinantes/química , Trifosfato de Adenosina/química , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/farmacologia , Humanos , Cinética , Ligantes , Microscopia de Fluorescência , Neoplasias/tratamento farmacológico , Fosfatos/química , Fosforilação , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Especificidade por Substrato , Uridina Trifosfato/química , Gencitabina
3.
J Membr Biol ; 192(3): 169-79, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12820662

RESUMO

The purpose of this study was to characterize the role of adenosine-dependent regulation of anion secretion in Calu-3 cells. RT-PCR studies showed that Calu-3 cells expressed mRNA for A2A and A2B but not A1 or A3 receptors, and for hENT1, hENT2 and hCNT3 but not hCNT1 or hCNT2 nucleoside transporters. Short-circuit current measurements indicated that A2B receptors were present in both apical and basolateral membranes, whereas A2A receptors were detected only in basolateral membranes. Uptake studies demonstrated that the majority of adenosine transport was mediated by hENT1, which was localized to both apical and basolateral membranes, with a smaller hENT2-mediated component in basolateral membranes. Whole-cell current measurements showed that application of extracellular nitrobenzylmercaptopurine ribonucleoside (NBMPR), a selective inhibitor of hENT1-mediated transport, had similar effects on whole-cell currents as the application of exogenous adenosine. Inhibitors of adenosine kinase and 5'-nucleotidase increased and decreased, respectively, whole-cell currents, whereas inhibition of adenosine deaminase had no effect. Single-channel studies showed that NBMPR and adenosine kinase inhibitors activated CFTR Cl- channels. These results suggested that the equilibrative nucleoside transporters (hENT1, hENT2) together with adenosine kinase and 5'-nucleotidase play a crucial role in the regulation of CFTR through an adenosine-dependent pathway in human airway epithelia.


Assuntos
Adenosina/metabolismo , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Homeostase/fisiologia , Proteínas de Transporte de Nucleosídeos/metabolismo , Mucosa Respiratória/metabolismo , Linhagem Celular , Humanos , Potenciais da Membrana/fisiologia
5.
J Histochem Cytochem ; 50(3): 305-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11850433

RESUMO

Adenosine exerts multiple receptor-mediated effects in the heart, including a negative chronotropic effect on the sinoatrial node. The aim of this study was to investigate the distribution of the equilibrative nucleoside transporter rENT1 in rat sinoatrial node and atrial muscle. Immunocytochemistry and/or immunoblotting revealed abundant expression of this protein in plasma membranes of sinoatrial node and in atrial and ventricular cells. Because rENT1-mediated transport is likely to regulate the local concentrations of adenosine in the sinoatrial node and other parts of the heart, it represents a potential pharmacological target that might be exploited to ameliorate ischemic damage during heart surgery.


Assuntos
Proteínas de Transporte/análise , Transportador Equilibrativo 1 de Nucleosídeo , Imuno-Histoquímica , Nó Sinoatrial/química , Animais , Conexina 43/análise , Proteínas de Transporte de Nucleosídeo Equilibrativas , Feminino , Átrios do Coração/química , Immunoblotting , Masculino , Microscopia Confocal , Ratos , Distribuição Tecidual
6.
Am J Physiol Cell Physiol ; 281(6): C1991-2002, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11698258

RESUMO

The regulatory actions of adenosine on ion channel function are mediated by four distinct membrane receptors. The concentration of adenosine in the vicinity of these receptors is controlled, in part, by inwardly directed nucleoside transport. The purpose of this study was to characterize the effects of adenosine on ion channels in A549 cells and the role of nucleoside transporters in this regulation. Ion replacement and pharmacological studies showed that adenosine and an inhibitor of human equilibrative nucleoside transporter (hENT)-1, nitrobenzylthioinosine, activated K(+) channels, most likely Ca(2+)-dependent intermediate-conductance K(+) (I(K)) channels. A(1) but not A(2) receptor antagonists blocked the effects of adenosine. RT-PCR studies showed that A549 cells expressed mRNA for I(K)-1 channels as well as A(1), A(2A), and A(2B) but not A(3) receptors. Similarly, mRNA for equilibrative (hENT1 and hENT2) but not concentrative (hCNT1, hCNT2, and hCNT3) nucleoside transporters was detected, a result confirmed in functional uptake studies. These studies showed that adenosine controls the function of K(+) channels in A549 cells and that hENTs play a crucial role in this process.


Assuntos
Adenosina/farmacologia , Comunicação Autócrina/fisiologia , Células Epiteliais/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo , Canais de Potássio/metabolismo , Mucosa Respiratória/metabolismo , Teobromina/análogos & derivados , Tioinosina/análogos & derivados , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Adenosina/metabolismo , Marcadores de Afinidade/farmacologia , Amilorida/farmacologia , Linhagem Celular , Polaridade Celular , Clotrimazol/farmacologia , Diuréticos/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo , Inibidores do Crescimento/farmacologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio/genética , Quinazolinas/farmacologia , Receptores Purinérgicos P1/metabolismo , Mucosa Respiratória/citologia , Teobromina/farmacologia , Tioinosina/farmacologia , Triazóis/farmacologia , Uridina/metabolismo , Xantinas/farmacologia
7.
Biochemistry ; 40(43): 12967-73, 2001 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-11669634

RESUMO

Human polynucleotide kinase (hPNK) is a putative DNA repair enzyme in the base excision repair pathway required for processing and rejoining strand-break termini. This study represents the first systematic examination of the physical properties of this enzyme. The protein was produced in Escherichia coli as a His-tagged protein, and the purified recombinant protein exhibited both the kinase and the phosphatase activities. The predicted relative molecular mass (M(r)) of the 521 amino acid polypeptide encoded by the sequenced cDNA for PNK and the additional 21 amino acids of the His tag is 59,538. The M(r) determined by low-speed sedimentation equilibrium under nondenaturing conditions was 59,600 +/- 1000, indicating that the protein exists as a monomer, in contrast to T4 phage PNK, which exists as a homotetramer. The size and shape of hPNK in solution were determined by analytical ultracentrifugation studies. The protein was found to have an intrinsic sedimentation coefficient, s(0)(20,w), of 3.54 S and a Stokes radius, R(s), of 37.5 A. These hydrodynamic data, together with the M(r) of 59 600, suggest that hPNK is a moderately asymmetric protein with an axial ratio of 5.51. Analysis of the secondary structure of hPNK on the basis of circular dichroism spectra, which revealed the presence of two negative dichroic bands located at 218 and 209 nm, with ellipticity values of -7200 +/- 300 and -7800 +/- 300 deg x cm(2) x d(mol(-1), respectively, indicated the presence of approximately 50% beta-structure and 25% alpha-helix. Binding of ATP to the protein induced an increase in beta-structure and perturbed tryptophan, tyrosine, and phenylalanine signals observed by aromatic CD and UV difference spectroscopy.


Assuntos
Polinucleotídeo 5'-Hidroxiquinase/química , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Água/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos/química , Animais , Dicroísmo Circular , Clonagem Molecular , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Humanos , Fenilalanina/química , Reação em Cadeia da Polimerase , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Triptofano/química , Tirosina/química , Ultracentrifugação/métodos , Raios Ultravioleta
8.
Mol Pharmacol ; 60(5): 1143-52, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11641443

RESUMO

CEM-ARAC leukemia cells with resistance to cytarabine were shown to lack equilibrative transporter (hENT1) expression and activity. Stable transfer of hCNT2 cDNA into CEM-ARAC enabled Na(+)-dependent transport of purine and pyrimidine nucleoside analogs and provided a unique in vitro model for studying hCNT2. Analysis of [(3)H]uridine inhibitory activity by test substances in hCNT2 transfectant ARAC/D2 revealed structural requirements for interaction with hCNT2: 1) ribosyl and 2'-deoxyribosyl nucleosides were better inhibitors than 3'-deoxyribosyl, 2',3'-dideoxyribosyl or arabinosyl nucleosides; 2) uridine analogs with halogens at position 5 were better inhibitors than 5-methyluridine or thymidine; 3) 2-chloroadenosine was a better inhibitor than 2-chloro-2'-deoxyadenosine (cladribine); and 4) cytosine-containing nucleosides, 7-deazaadenosine and nucleobases were not inhibitors. Quantification of inhibitory capacity yielded K(i) values of 34-50 microM (5-halogenated uridine analogs, 2'-deoxyuridine), 82 microM (5-fluoro-2'-deoxyuridine), 197-246 microM (5-methyluridine < 5-bromo-2'-deoxyuridine < 5-iodo-2'-deoxyuridine), and 411 microM (5-fluoro-5'-deoxyuridine, capecitabine metabolite). Comparisons of hCNT2-mediated transport rates indicated halogenated uridine analogs were transported more rapidly than halogenated adenosine analogs, even though hCNT2 exhibited preference for physiologic purine nucleosides over uridine. Kinetics of hCNT2-mediated transport of 5-fluorouridine and uridine were similar (K(m) values, 43-46 microM). The impact of hCNT2-mediated transport on chemosensitivity was assessed by comparing antiproliferative activity of nucleoside analogs against hCNT2-containing cells with transport-defective, drug-resistant cells. Chemosensitivity was restored partially for cladribine, completely for 5-fluorouridine and 5-fluoro-2'-deoxyuridine, whereas there was little effect on chemosensitivity for fludarabine, 7-deazaadenosine, or cytarabine. These studies, which demonstrated hCNT2 uptake of halogenated uridine analogs, suggested that hCNT2 is an important determinant of cytotoxicity of this class of compounds in vivo.


Assuntos
Floxuridina/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Uridina/análogos & derivados , Uridina/farmacologia , Transporte Biológico/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , DNA Complementar/genética , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Transportador Equilibrativo 1 de Nucleosídeo , Técnicas de Transferência de Genes , Halogênios/química , Humanos , Concentração Inibidora 50 , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Nucleosídeos de Purina/química , Nucleosídeos de Purina/metabolismo , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/metabolismo , Nucleosídeos de Pirimidina/farmacologia , RNA Mensageiro/metabolismo , Sódio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Uridina/química , Uridina/metabolismo
9.
Cancer Res ; 61(19): 7217-24, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11585758

RESUMO

Troxacitabine (Troxatyl; BCH-4556; (-)-2'-deoxy-3'-oxacytidine), a deoxycytidine analogue with an unusual dioxolane structure and nonnatural L-configuration, has potent antitumor activity in animal models and is in clinical trials against human malignancies. The current work was undertaken to identify potential biochemical mechanisms of resistance to troxacitabine and to determine whether there are differences in resistance mechanisms between troxacitabine, gemcitabine, and cytarabine in human leukemic and solid tumor cell lines. The CCRF-CEM leukemia cell line was highly sensitive to the antiproliferative effects of troxacitabine, gemcitabine, and cytarabine with inhibition of proliferation by 50% observed at 160, 20, and 10 nM, respectively, whereas a deoxycytidine kinase (dCK)-deficient variant (CEM/dCK(-)) was resistant to all three drugs. In contrast, a nucleoside transport-deficient variant (CEM/ARAC8C) exhibited high levels of resistance to cytarabine (1150-fold) and gemcitabine (432-fold) but only minimal resistance to troxacitabine (7-fold). Analysis of troxacitabine transportability by the five molecularly characterized human nucleoside transporters [human equilibrative nucleoside transporters 1 and 2, human concentrative nucleoside transporter (hCNT) 1, hCNT2, and hCNT3] revealed that short- and long-term uptake of 10-30 microM [(3)H]troxacitabine was low and unaffected by the presence of either nucleoside transport inhibitors or high concentrations of nonradioactive troxacitabine. These results, which suggested that the major route of cellular uptake of troxacitabine was passive diffusion, demonstrated that deficiencies in nucleoside transport were unlikely to impart resistance to troxacitabine. A troxacitabine-resistant prostate cancer subline (DU145(R); 6300-fold) that exhibited reduced uptake of troxacitabine was cross-resistant to both gemcitabine (350-fold) and cytarabine (300-fold). dCK activity toward deoxycytidine in DU145(R) cell lysates was <20% of that in DU145 cell lysates, and no activity was detected toward troxacitabine. Sequence analysis of cDNAs encoding dCK revealed a mutation of a highly conserved amino acid (Trp(92)-->Leu) in DU145(R) dCK, providing a possible explanation for the reduced phosphorylation of troxacitabine in DU145(R) lysates. Reduced deamination of deoxycytidine was also observed in DU145(R) relative to DU145 cells, and this may have contributed to the overall resistance phenotype. These results, which demonstrated a different resistance profile for troxacitabine, gemcitabine, and cytarabine, suggest that troxacitabine may have an advantage over gemcitabine and cytarabine in human malignancies that lack or have low nucleoside transport activities.


Assuntos
Antineoplásicos/farmacocinética , Citosina/farmacocinética , Dioxolanos/farmacocinética , Leucemia/metabolismo , Neoplasias da Próstata/metabolismo , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Transporte Biológico , Proteínas de Transporte/metabolismo , Citarabina/farmacocinética , Citidina Desaminase/metabolismo , Citosina/análogos & derivados , Citosina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Desoxicitidina/farmacocinética , Desoxicitidina Quinase/deficiência , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Dioxolanos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Masculino , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas de Transporte de Nucleosídeos , Fosforilação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Estereoisomerismo , Trítio , Células Tumorais Cultivadas , Uridina/farmacocinética , Gencitabina
10.
Br J Pharmacol ; 134(5): 1037-44, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11682452

RESUMO

1. Adenosine kinase (AK) inhibitors can enhance adenosine levels and potentiate adenosine receptor activation. As the AK inhibitors 5' iodotubercidin (ITU) and 5-amino-5'-deoxyadenosine (NH(2)dAdo) are nucleoside analogues, we hypothesized that nucleoside transporter subtype expression can affect the potency of these inhibitors in intact cells. 3. Three nucleoside transporter subtypes that mediate adenosine permeation of rat cells have been characterized and cloned: equilibrative transporters rENT1 and rENT2 and concentrative transporter rCNT2. We stably transfected rat C6 glioma cells, which express rENT2 nucleoside transporters, with rENT1 (rENT1-C6 cells) or rCNT2 (rCNT2-C6 cells) nucleoside transporters. 3. We tested the effects of ITU and NH(2)dAdo on [(3)H]-adenosine uptake and conversion to [(3)H]-adenine nucleotides in the three cell types. NH(2)dAdo did not show any cell type selectivity. In contrast, ITU showed significant inhibition of [(3)H]-adenosine uptake and [(3)H]-adenine nucleotide formation at concentrations < or =100 nM in rENT1-C6 cells, while concentrations > or =3 microM were required for C6 or rCNT2-C6 cells. 4. Nitrobenzylthioinosine (NBMPR; 100 nM), a selective inhibitor of rENT1, abolished the effects of nanomolar concentrations of ITU in rENT1-C6 cells. 5. This study demonstrates that the effects of ITU, but not NH(2)dAdo, in whole cell assays are dependent upon nucleoside transporter subtype expression. Thus, cellular and tissue differences in expression of nucleoside transporter subtypes may affect the pharmacological actions of some AK inhibitors.


Assuntos
Proteínas de Transporte/fisiologia , Transportador Equilibrativo 1 de Nucleosídeo , Transportador Equilibrativo 2 de Nucleosídeo , Proteínas de Membrana/fisiologia , Tioinosina/análogos & derivados , Tubercidina/análogos & derivados , Nucleotídeos de Adenina/metabolismo , Adenosina/farmacocinética , Adenosina Quinase/antagonistas & inibidores , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Desoxiadenosinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Proteínas de Transporte de Nucleosídeo Equilibrativas , Expressão Gênica , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Transporte de Nucleosídeos , Tioinosina/farmacologia , Trítio , Tubercidina/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo
11.
J Biol Chem ; 276(48): 45270-5, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11584005

RESUMO

The human equilibrative nucleoside transporter hENT1, the first identified member of the ENT family of integral membrane proteins, is the primary mechanism for the cellular uptake of physiologic nucleosides, including adenosine, and many anti-cancer nucleoside drugs. We have produced recombinant hENT1 in Xenopus oocytes and used native and engineered N-glycosylation sites in combination with immunological approaches to experimentally define the membrane architecture of this prototypic nucleoside transporter. hENT1 (456 amino acid residues) is shown to contain 11 transmembrane helical segments with an amino terminus that is intracellular and a carboxyl terminus that is extracellular. Transmembrane helices are linked by short hydrophilic regions, except for a large glycosylated extracellular loop between transmembrane helices 1 and 2 and a large central cytoplasmic loop between transmembrane helices 6 and 7. Sequence analyses suggest that this membrane topology is common to all mammalian, insect, nematode, protozoan, yeast, and plant members of the ENT protein family.


Assuntos
Adenosina/farmacocinética , Antineoplásicos/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Tioinosina/análogos & derivados , Tioinosina/química , Algoritmos , Aminoácidos/química , Animais , Transporte Biológico , Membrana Celular/metabolismo , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Transportador Equilibrativo 1 de Nucleosídeo , Glicosilação , Humanos , Immunoblotting , Imuno-Histoquímica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Software , Xenopus/metabolismo
12.
Mol Membr Biol ; 18(1): 65-72, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11396613

RESUMO

The human concentrative (Na+-linked) plasma membrane transport proteins hCNT1 and hCNT2, found primarily in specialized epithelia, are selective for pyrimidine nucleosides (system cit) and purine nucleosides (system cif), respectively. Both have orthologs in other mammalian species and belong to a gene family (CNT) that also includes members in lower vertebrates, insects, nematodes, pathogenic yeast and bacteria. The CNT transporter family also includes a newly identified human and mouse CNT3 transporter isoform. This paper reviews the studies of CNT transport proteins that led to the identification of hCNT3 and mCNT3, and gives an overview of the structural and functional properties of these latest CNT family members. hCNT3 and mCNT3 have primary structures that place them in a CNT subfamily separate from CNT1/2, transport a wide range of physiological pyrimidine and purine nucleosides and antineoplastic and antiviral nucleoside drugs (system cib), and exhibit a Na+:uridine coupling ratio of at least 2:1 (cf 1:1 for hCNT1/2). Cells and tissues containing hCNT3 transcripts include mammary gland, differentiated HL-60 cells, pancreas, bone marrow, trachea, liver, prostrate and regions of intestine, brain and heart. In HL-60 cells, hCNT3 is transcriptionally regulated by phorbol myristate (PMA). The hCNT3 gene, which contains an upstream PMA response element, mapped to 9q22.2 (cf chromosome 15 for hCNT1 and hCNT2).


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo , Sódio/metabolismo , Animais , Antineoplásicos/farmacologia , Antivirais/farmacologia , Transporte Biológico , Membrana Celular/metabolismo , Cromossomos Humanos Par 9 , Clonagem Molecular , Bases de Dados como Assunto , Células HL-60 , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos , Filogenia , Isoformas de Proteínas , Transporte Proteico , Especificidade por Substrato , Distribuição Tecidual , Xenopus
13.
Mol Membr Biol ; 18(1): 73-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11396614

RESUMO

The transport of nucleosides and nucleobases in the yeast Saccharomyces cerevisiae is reviewed and the use of this organism to study recombinant mammalian concentrative nucleoside transport (CNT) proteins is described. A selection strategy based on the ability of an expressed nucleoside transporter cDNA to mediate thymidine uptake by yeast under a selective condition that depletes endogenous thymidylate was used to assess the transport capacity of heterologous transporter proteins. The pyrimidine-nucleoside selective concentrative transporters from human (hCNT1) and rat (rCNT1) complemented the imposed thymidylate depletion in S. cerevisiae, as did N-terminally truncated versions of hCNT1 and rCNT1 lacking up to 31 amino acids. Transporter-mediated rescue of S. cerevisiae by both nucleoside transporters was inhibited by cytidine, uridine and adenosine, but not by guanosine or inosine. This work represents the development of a new model system for the functional production of recombinant nucleoside transporters of the CNT family of membrane proteins.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Nucleosídeos/metabolismo , Proteínas de Transporte de Nucleotídeos , Saccharomyces cerevisiae/metabolismo , Animais , Transporte Biológico , DNA Complementar/metabolismo , Teste de Complementação Genética , Humanos , Proteínas de Transporte de Nucleobases , Proteínas de Transporte de Nucleosídeos , Ratos , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Neuropharmacology ; 40(5): 722-31, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11311901

RESUMO

Nucleoside transport processes play an important role in human cells in salvage of nucleosides used in the biosynthesis of nucleic acids and in regulating endogenous adenosine concentrations in the human central nervous system (CNS). By altering the levels of adenosine available to interact with cell-surface receptors, nucleoside transporters have profound effects on the ability of adenosine to modulate neurotransmission, vascular tone and other physiological events. Although the human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) are believed to play a crucial role in modulating brain function, their distribution within the major divisions of the human CNS is not known. In this work, antibodies specific for hENT1 and hENT2 were produced against fragments of the transporter proteins and used for immunoblot analysis of enriched membrane fractions prepared from several regions of the human brain. While hENT1 was most prevalent in the frontal and parietal lobes of the cerebral cortex, thalamus, midbrain and basal ganglia, hENT2 was concentrated in the cerebellum and brainstem regions, particularly the pons. The apparent reciprocal distribution of hENT1 and hENT2 in human brain suggests that these nucleoside transporter proteins are produced in distinct regions of the CNS where they function in nucleoside salvage and/or regulation of exogenous adenosine. Within the brain regions that were investigated, the pattern of hENT1 distribution correlated well with adenosine A(1) receptor abundance. The regional co-localization of hENT1 and A(1) receptor protein suggests an important role of hENT1-mediated transport process in the control of neuromodulatory actions mediated by adenosine A(1) receptors in human brain.


Assuntos
Proteínas de Transporte/metabolismo , Sistema Nervoso Central/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo , Proteínas de Membrana/metabolismo , Adenosina/farmacologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Biomarcadores , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Sistema Nervoso Central/anatomia & histologia , Densitometria , Eletroforese em Gel de Poliacrilamida , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo , Membrana Eritrocítica/efeitos dos fármacos , Humanos , Immunoblotting , Dados de Sequência Molecular , Neurotransmissores/farmacologia , Receptor A2A de Adenosina , Receptores Purinérgicos P1/metabolismo
15.
Biochem J ; 353(Pt 2): 387-93, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11139404

RESUMO

The human and rat equilibrative nucleoside transporter proteins hENT1, rENT1, hENT2 and rENT2 belong to a family of integral membrane proteins with 11 potential transmembrane segments (TMs), and are distinguished functionally by differences in transport of nucleobases and sensitivity to inhibition by nitrobenzylthioinosine (NBMPR) and vasoactive drugs. In the present study, we have produced recombinant hENT1, rENT1, hENT2 and rENT2 in Xenopus oocytes and investigated uridine transport following exposure to the impermeant thiol-reactive reagent p-chloromercuriphenyl sulphonate (PCMBS). PCMBS caused reversible inhibition of uridine influx by rENT2, but had no effect on hENT1, hENT2 or rENT1. This difference correlated with the presence in rENT2 of a unique Cys residue (Cys(140)) in the outer half of TM4 that was absent from the other ENTs. Mutation of Cys(140) to Ser produced a functional protein (rENT2/C140S) that was insensitive to inhibition by PCMBS, identifying Cys(140) as the exofacial Cys residue in rENT2 responsible for PCMBS inhibition. Uridine protected wild-type rENT2 against PCMBS inhibition, suggesting that Cys(140) in TM4 lies within or is closely adjacent to the substrate-translocation channel of the transporter. TM4 has been shown previously to be within a structural domain (TMs 3-6) responsible for interactions with NBMPR, vasoactive drugs and nucleobases.


Assuntos
Proteínas de Transporte/química , Cisteína/química , Transportador Equilibrativo 1 de Nucleosídeo , Transportador Equilibrativo 2 de Nucleosídeo , Tioinosina/análogos & derivados , Tioinosina/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte de Nucleosídeo Equilibrativas , Cinética , Dados de Sequência Molecular , Proteínas de Transporte de Nucleosídeos , Oócitos/metabolismo , Ratos , Alinhamento de Sequência , Transcrição Gênica , Uridina/metabolismo , Xenopus
16.
J Neurochem ; 75(4): 1528-38, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10987833

RESUMO

Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo , Glioma/metabolismo , Nucleosídeos/metabolismo , Purinas/metabolismo , Purinas/farmacocinética , Tioinosina/análogos & derivados , AMP Desaminase/antagonistas & inibidores , Adenina/metabolismo , Adenosina/metabolismo , Adenosina/farmacocinética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Proteínas de Transporte de Nucleosídeo Equilibrativas , Formicinas/metabolismo , Formicinas/farmacocinética , Glioma/patologia , Hipoxantina/metabolismo , Inosina/metabolismo , Iodoacetatos/farmacologia , Nucleosídeos/farmacocinética , Inibidores de Fosfodiesterase/farmacologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , Cianeto de Sódio/farmacologia , Células Tumorais Cultivadas
17.
Biochem J ; 349(Pt 1): 67-75, 2000 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10861212

RESUMO

Plasmodium, the aetiologic agent of malaria, cannot synthesize purines de novo, and hence depends upon salvage from the host. Here we describe the molecular cloning and functional expression in Xenopus oocytes of the first purine transporter to be identified in this parasite. This 422-residue protein, which we designate PfENT1, is predicted to contain 11 membrane-spanning segments and is a distantly related member of the widely distributed eukaryotic protein family the equilibrative nucleoside transporters (ENTs). However, it differs profoundly at the sequence and functional levels from its homologous counterparts in the human host. The parasite protein exhibits a broad substrate specificity for natural nucleosides, but transports the purine nucleoside adenosine with a considerably higher apparent affinity (K(m) 0.32+/-0.05 mM) than the pyrimidine nucleoside uridine (K(m) 3.5+/-1.1 mM). It also efficiently transports nucleobases such as adenine (K(m) 0.32+/-0.10 mM) and hypoxanthine (K(m) 0.41+/-0.1 mM), and anti-viral 3'-deoxynucleoside analogues. Moreover, it is not sensitive to classical inhibitors of mammalian ENTs, including NBMPR [6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, or nitrobenzylthioinosine] and the coronary vasoactive drugs, dipyridamole, dilazep and draflazine. These unique properties suggest that PfENT1 might be a viable target for the development of novel anti-malarial drugs.


Assuntos
Antimaláricos/farmacologia , Transporte Biológico , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos , Nucleosídeos/metabolismo , Plasmodium falciparum/química , Proteínas de Protozoários , Tioinosina/análogos & derivados , Adenina/metabolismo , Sequência de Aminoácidos , Animais , Southern Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cátions , Membrana Celular/metabolismo , Clonagem Molecular , Dilazep/farmacologia , Dipiridamol/farmacologia , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Filogenia , Piperazinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tioinosina/farmacologia , Fatores de Tempo , Uridina/metabolismo , Vasodilatadores/farmacologia , Xenopus
18.
J Biol Chem ; 275(34): 25931-8, 2000 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-10827169

RESUMO

FUI1 and function unknown now 26 (FUN26) are proteins of uncertain function with sequence similarities to members of the uracil/allantoin permease and equilibrative nucleoside transporter families of transporter proteins, respectively. [(3)H]Uridine influx was eliminated by disruption of the gene encoding FUI1 (fui1) and restored by expression of FUI1 cDNA, whereas influx in transport-competent and fui1-negative yeast were unaffected, respectively, by disruption of the FUN26 gene or overexpression of FUN26 cDNA. FUI1 transported uridine with high affinity (K(m), 22 +/- 3 micrometer) and was unaffected or inhibited only partially by high concentrations (1 mm) of a variety of ribo- and deoxyribonucleosides or nucleobases. When FUN26 cDNA was expressed in oocytes of Xenopus laevis, inward fluxes of [(3)H]uridine, [(3)H]adenosine, and [(3)H]cytidine were stimulated, and uridine influx was independent of pH and not inhibited by dilazep, dipyridamole, or nitrobenzylmercaptopurine ribonucleoside. Fractionation of yeast membranes containing immunotagged recombinant FUN26 (shown to be functional in oocytes) demonstrated that the protein was primarily in intracellular membranes. These results indicated that FUI1 has high selectivity for uracil-containing ribonucleosides and imports uridine across cell-surface membranes, whereas FUN26 has broad nucleoside selectivity and most likely functions to transport nucleosides across intracellular membranes.


Assuntos
Proteínas Fúngicas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , Animais , Transporte Biológico Ativo , Cinética , Proteínas de Transporte de Nucleosídeos , Oócitos/metabolismo , Xenopus laevis
19.
Artigo em Inglês | MEDLINE | ID: mdl-10772724

RESUMO

The transportability of cytosine-containing nucleosides by recombinant hCNT1 was investigated in transfected mammalian cells. Apparent K(m) values for hCNT1-mediated transport of uridine, cytidine and deoxycytidine were, respectively, 59, 140 and 150 microM. Uridine transport was inhibited 89, 32 and 11%, respectively, by 500 microM gemcitabine, cytarabine and lamivudine, demonstrating that, unlike gemcitabine (a high-affinity hCNT1 permeant), cytarabine and lamivudine are poor hCNT1 permeants.


Assuntos
Proteínas de Transporte/metabolismo , Citidina/metabolismo , Desoxicitidina/metabolismo , Proteínas de Membrana Transportadoras , Uridina/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Antivirais/farmacologia , Transporte Biológico , Células COS , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Citarabina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Haplorrinos , Células HeLa , Humanos , Immunoblotting , Lamivudina/farmacologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transfecção , Gencitabina
20.
J Natl Cancer Inst ; 91(21): 1876-81, 1999 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-10547395

RESUMO

BACKGROUND: Gemcitabine, a pyrimidine analogue of deoxycytidine, is an anticancer nucleoside drug that requires functional plasma membrane nucleoside transporter proteins to reach its intracellular targets and cause cytotoxicity. Because of technical difficulties inherent in studying nucleoside transport in human cells, we rigorously defined gemcitabine membrane transportability by producing each of the available human (h) and rat (r) recombinant nucleoside transporters (NTs) individually in Xenopus laevis oocytes. METHODS: Oocytes were microinjected with in vitro-transcribed RNAs derived from complementary DNAs encoding (C = concentrative) rCNT1, rCNT2, hCNT1, hCNT2, (E = equilibrative) rENT1, rENT2, hENT1, and hENT2. Uptake of [(3)H]gemcitabine and [(14)C] uridine was measured 3 days after microinjection to determine kinetic constants. We also used the two-electrode, voltage-clamp technique to investigate the electrophysiology of hCNT1-mediated gemcitabine transport. RESULTS: Gemcitabine was transported by most of the tested proteins (the exceptions being the purine-selective rCNT2 and hCNT2), with the greatest uptake occurring in oocytes producing recombinant rCNT1 and hCNT1. Influxes of gemcitabine mediated by hCNT1, hENT1, and hENT2 were saturable and conformed to Michaelis-Menten kinetics with apparent K(m) values of 24, 160, and 740 microM, respectively. Gemcitabine had a limited ability to cross the lipid bilayer of oocyte membranes by simple diffusion. External application of gemcitabine to oocytes producing recombinant hCNT1 induced an inward current, which demonstrated that hCNT1 functions as a Na(+)/nucleoside co-transport protein and confirmed the transporter's ability to transport gemcitabine. CONCLUSIONS: Mammalian nucleoside transporters vary widely in their affinity and capacity to transport gemcitabine. Variation in the tumor and tissue distribution of plasma membrane nucleoside transporter proteins may contribute to the solid tumor activities and schedule-dependent toxic effects of gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/metabolismo , Proteínas de Transporte/metabolismo , Desoxicitidina/análogos & derivados , Nucleosídeos/metabolismo , Oócitos/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Transporte Biológico , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Eletrofisiologia , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Sódio/efeitos dos fármacos , Uridina/metabolismo , Xenopus laevis , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA