Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35624761

RESUMO

Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.

2.
Sci Rep ; 11(1): 22119, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764412

RESUMO

REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) is a global strategy and regulation policy of the EU that aims to improve the protection of human health and the environment through the better and earlier identification of the intrinsic properties of chemical substances. It entered into force on 1st June 2007 (EC 1907/2006). REACH and EU policies plead for the use of robust high-throughput "omic" techniques for the in vitro investigation of the toxicity of chemicals that can provide an estimation of their hazards as well as information regarding the underlying mechanisms of toxicity. In agreement with the 3R's principles, cultured cells are nowadays widely used for this purpose, where metabolomics can provide a real-time picture of the metabolic effects caused by exposure of cells to xenobiotics, enabling the estimations about their toxicological hazards. High quality and robust metabolomics data sets are essential for precise and accurate hazard predictions. Currently, the acquisition of consistent and representative metabolomic data is hampered by experimental drawbacks that hinder reproducibility and difficult robust hazard interpretation. Using the differentiated human liver HepG2 cells as model system, and incubating with hepatotoxic (acetaminophen and valproic acid) and non-hepatotoxic compounds (citric acid), we evaluated in-depth the impact of several key experimental factors (namely, cell passage, processing day and storage time, and compound treatment) and instrumental factors (batch effect) on the outcome of an UPLC-MS metabolomic analysis data set. Results showed that processing day and storage time had a significant impact on the retrieved cell's metabolome, while the effect of cell passage was minor. Meta-analysis of results from pathway analysis showed that batch effect corrections and quality control (QC) measures are critical to enable consistent and meaningful estimations of the effects caused by compounds on cells. The quantitative analysis of the changes in metabolic pathways upon bioactive compound treatment remained consistent despite the concurrent causes of metabolomic data variation. Thus, upon appropriate data retrieval and correction and by an innovative metabolic pathway analysis, the metabolic alteration predictions remained conclusive despite the acknowledged sources of variability.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Fígado/efeitos dos fármacos , Metabolômica/métodos , Acetaminofen/toxicidade , Linhagem Celular Tumoral , Ácido Cítrico/toxicidade , Células Hep G2 , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Controle de Qualidade , Reprodutibilidade dos Testes , Ácido Valproico/toxicidade , Xenobióticos/toxicidade
3.
Biomolecules ; 10(3)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213983

RESUMO

The vitamin D receptor (VDR) must be relevant to liver lipid metabolism because VDR deficient mice are protected from hepatosteatosis. Therefore, our objective was to define the role of VDR on the overall lipid metabolism in human hepatocytes. We developed an adenoviral vector for human VDR and performed transcriptomic and metabolomic analyses of cultured human hepatocytes upon VDR activation by vitamin D (VitD). Twenty percent of the VDR responsive genes were related to lipid metabolism, including MOGAT1, LPGAT1, AGPAT2, and DGAT1 (glycerolipid metabolism); CDS1, PCTP, and MAT1A (phospholipid metabolism); and FATP2, SLC6A12, and AQP3 (uptake of fatty acids, betaine, and glycerol, respectively). They were rapidly induced (4-6 h) upon VDR activation by 10 nM VitD or 100 µM lithocholic acid (LCA). Most of these genes were also upregulated by VDR/VitD in mouse livers in vivo. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) metabolomics demonstrated intracellular accumulation of triglycerides, with concomitant decreases in diglycerides and phosphatidates, at 8 and 24 h upon VDR activation. Significant alterations in phosphatidylcholines, increases in lyso-phosphatidylcholines and decreases in phosphatidylethanolamines and phosphatidylethanolamine plasmalogens were also observed. In conclusion, active VitD/VDR signaling in hepatocytes triggers an unanticipated coordinated gene response leading to triglyceride synthesis and to important perturbations in glycerolipids and phospholipids.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , Fosfolipídeos/biossíntese , Receptores de Calcitriol/metabolismo , Triglicerídeos/biossíntese , Animais , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout para ApoE , Fosfolipídeos/genética , Receptores de Calcitriol/genética , Triglicerídeos/genética
4.
Arch Toxicol ; 94(2): 589-607, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31894354

RESUMO

Anabolic-androgenic steroids are testosterone derivatives, used by body-builders to increase muscle mass. Epistane (EPI) is an orally administered 17α-alkylated testosterone derivative with 2a-3a epithio ring. We identified four individuals who, after EPI consumption, developed long-lasting cholestasis. The bile acid (BA) profile of three patients was characterized, as well the molecular mechanisms involved in this pathology. The serum BA pool was increased from 14 to 61-fold, basically on account of primary conjugated BA (cholic acid (CA) conjugates), whereas secondary BA were very low. In in vitro experiments with cultured human hepatocytes, EPI caused the accumulation of glycoCA in the medium. Moreover, as low as 0.01 µM EPI upregulated the expression of key BA synthesis genes (CYP7A1, by 65% and CYP8B1, by 67%) and BA transporters (NTCP, OSTA and BSEP), and downregulated FGF19. EPI increased the uptake/accumulation of a fluorescent BA analogue in hepatocytes by 50-70%. Results also evidenced, that 40 µM EPI trans-activated the nuclear receptors LXR and PXR. More importantly, 0.01 µM EPI activated AR in hepatocytes, leading to an increase in the expression of CYP8B1. In samples from a human liver bank, we proved that the expression of AR was positively correlated with that of CYP8B1 in men. Taken together, we conclude that EPI could cause cholestasis by inducing BA synthesis and favouring BA accumulation in hepatocytes, at least in part by AR activation. We anticipate that the large phenotypic variability of BA synthesis enzymes and transport genes in man provide a putative explanation for the idiosyncratic nature of EPI-induced cholestasis.


Assuntos
Ácidos e Sais Biliares/sangue , Colestase/induzido quimicamente , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Congêneres da Testosterona/toxicidade , Adulto , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Ácido Cólico/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Receptores Androgênicos/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
5.
Anal Bioanal Chem ; 408(4): 1217-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26769129

RESUMO

MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.


Assuntos
Cromatografia Líquida/métodos , Fígado/metabolismo , Metaboloma , Metabolômica/métodos , Animais , Adesão Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Técnicas Citológicas , Células Hep G2/química , Células Hep G2/metabolismo , Humanos , Extração Líquido-Líquido/métodos , Fígado/citologia , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Fluxo de Trabalho
6.
Stem Cell Res Ther ; 6: 246, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26652177

RESUMO

BACKGROUND: Hepatic cell therapy has become a viable alternative to liver transplantation for life-threatening liver diseases. However, the supply of human hepatocytes is limited due to the shortage of suitable donor organs required to isolate high-quality cells. Human pluripotent stem cells reflect a potential renewable source for generating functional hepatocytes. However, most differentiation protocols use undefined matrices or factors of animal origin; as such, the resulting hepatocytes are not Good Manufacturing Practice compliant. Moreover, the preclinical studies employed to assess safety and function of human embryonic stem cell (hESC)-derived hepatocytes are generally limited to immunodeficient mice. In the present study, we evaluate the generation of hepatocytes under defined conditions using a European hESC line (VAL9) which was derived under animal-free conditions. The function capacity of VAL9-derived hepatocytes was assessed by transplantation into mice with acetaminophen-induced acute liver failure, a clinically relevant model. METHODS: We developed a protocol that successfully differentiates hESCs into bipotent hepatic progenitors under defined conditions, without the use of chromatin modifiers such as dimethyl sulphoxide. These progenitors can be cryopreserved and are able to generate both committed precursors of cholangiocytes and neonate-like hepatocytes. RESULTS: Thirty days post-differentiation, hESCs expressed hepatocyte-specific markers such as asialoglycoprotein receptor and hepatic nuclear factors including HNF4α. The cells exhibited properties of mature hepatocytes such as urea secretion and UGT1A1 and cytochrome P450 activities. When transplanted into mice with acetaminophen-induced acute liver failure, a model of liver damage, the VAL9-derived hepatocytes efficiently engrafted and proliferated, repopulating up to 10 % of the liver. In these transplanted livers, we observed a significant decrease of liver transaminases and found no evidence of tumourigenicity. Thus, VAL9-derived hepatocytes were able to rescue hepatic function in acetaminophen-treated animals. CONCLUSIONS: Our study reveals an efficient protocol for differentiating VAL9 hESCs to neonatal hepatocytes which are then able to repopulate livers in vivo without tumour induction. The human hepatocytes are able to rescue liver function in mice with acetaminophen-induced acute toxicity. These results provide proof-of-concept that replacement therapies using hESC-derived hepatocytes are effective for treating liver diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/terapia , Células-Tronco Embrionárias/citologia , Hepatócitos/citologia , Hepatócitos/transplante , Acetaminofen/toxicidade , Animais , Sistema Biliar/citologia , Diferenciação Celular , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
7.
Liver Transpl ; 21(6): 801-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25821167

RESUMO

Crigler-Najjar type 1 disease is a rare inherited metabolic disease characterized by high levels of unconjugated bilirubin due to the complete absence of hepatic uridine diphosphoglucuronate-glucuronosyltransferase activity. Hepatocyte transplantation (HT) has been proposed as an alternative treatment for Crigler-Najjar syndrome, but it is still limited by the quality and the low engraftment and repopulation ability of the cells used. Because of their attachment capability and expression of adhesion molecules as well as the higher proportion of hepatic progenitor cells, neonatal hepatocytes may have an advantage over adult cells. Adult or neonatal hepatocytes were transplanted into Gunn rats, a model for Crigler-Najjar disease. Engraftment and repopulation were studied and compared by immunofluorescence (IF). Additionally, the serum bilirubin levels, the presence of bilirubin conjugates in rat serum, and the expression of uridine diphosphate glucuronosyltransferase 1 family polypeptide A1 (UGT1A1) in rat liver samples were also analyzed. Here we show that neonatal HT results in long-term correction in Gunn rats. In comparison with adult cells, neonatal cells showed better engraftment and repopulation capability 3 days and 6 months after transplantation, respectively. Bilirubinemia decreased in the transplanted animals during the whole experimental follow-up (6 months). Bilirubin conjugates were also present in the serum of the transplanted animals. Western blots and IF confirmed the presence and expression of UGT1A1 in the liver. This work is the first to demonstrate the advantage of using neonatal hepatocytes for the treatment of Crigler-Najjar in vivo.


Assuntos
Síndrome de Crigler-Najjar/terapia , Hepatócitos/transplante , Regeneração Hepática , Idoso , Idoso de 80 Anos ou mais , Animais , Bilirrubina/sangue , Proliferação de Células , Feminino , Glucuronosiltransferase/metabolismo , Humanos , Recém-Nascido , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Propranolol , Ratos Gunn
8.
Arch Toxicol ; 88(4): 967-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24469900

RESUMO

It is estimated that only a few marketed drugs are able to directly induce liver steatosis. However, many other drugs may exacerbate or precipitate fatty liver in the presence of other risk factors or in patients prone to non-alcoholic fatty liver disease. On the other hand, current in vitro tests for drug-induced steatosis in preclinical research are scarce and not very sensitive or reproducible. In the present study, we have investigated the effect of well-characterized steatotic drugs on the expression profile of 47 transcription factors (TFs) in human hepatoma HepG2 cells and found that these drugs are able to up- and down-regulate a substantial number of these factors. Multivariate data analysis revealed a common TF signature for steatotic drugs, which consistently and significantly repressed FOXA1, HEX and SREBP1C in cultured cells. This signature was also observed in the livers of rats and in cultured human hepatocytes. Therefore, we selected these three TFs as predictive biomarkers for iatrogenic steatosis. With these biomarkers, a logistic regression analysis yielded a predictive model, which was able to correctly classify 92 % of drugs. The developed algorithm also predicted that ibuprofen, nifedipine and irinotecan are potential steatotic drugs, whereas troglitazone is not. In summary, this is a sensitive, specific and simple RT-PCR test that can be easily implemented in preclinical drug development to predict drug-induced steatosis. Our results also indicate that steatotic drugs affect expression of both common and specific subsets of TF and lipid metabolism genes, thus generating complex transcriptomic responses that cause or contribute to steatosis in hepatocytes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Toxicogenética/métodos , Fatores de Transcrição/genética , Idoso , Algoritmos , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medição de Risco , Fatores de Transcrição/metabolismo
9.
Biochim Biophys Acta ; 1831(4): 803-18, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23318274

RESUMO

Liver fatty acid binding protein (FABP1) prevents lipotoxicity of free fatty acids and regulates fatty acid trafficking and partition. Our objective is to investigate the transcription factors controlling the human FABP1 gene and their regulation in nonalcoholic fatty liver disease (NAFLD). Adenovirus-mediated expression of multiple transcription factors in HepG2 cells and cultured human hepatocytes demonstrated that FOXA1 and PPARα are among the most effective activators of human FABP1, whereas C/EBPα is a major dominant repressor. Moreover, FOXA1 and PPARα induced re-distribution of FABP1 protein and increased cytoplasmic expression. Reporter assays demonstrated that the major basal activity of the human FABP1 promoter locates between -96 and -229bp, where C/EBPα binds to a composite DR1-C/EBP element. Mutation of this element at -123bp diminished basal reporter activity, abolished repression by C/EBPα and reduced transactivation by HNF4α. Moreover, HNF4α gene silencing by shRNA in HepG2 cells caused a significant down-regulation of FABP1 mRNA expression. FOXA1 activated the FABP1 promoter through binding to a cluster of elements between -229 and -592bp, whereas PPARα operated through a conserved proximal element at -59bp. Finally, FABP1, FOXA1 and PPARα were concomitantly repressed in animal models of NAFLD and in human nonalcoholic fatty livers, whereas C/EBPα was induced or did not change. We conclude that human FABP1 has a complex mechanism of regulation where C/EBPα displaces HNF4α and hampers activation by FOXA1 and PPARα. Alteration of expression of these transcription factors in NAFLD leads to FABP1 gen repression and could exacerbate lipotoxicity and disease progression.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/terapia , Fator 3-alfa Nuclear de Hepatócito/metabolismo , PPAR alfa/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/genética , Fígado Gorduroso/genética , Células Hep G2 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , PPAR alfa/genética , Ligação Proteica
10.
PLoS One ; 7(1): e30014, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22238690

RESUMO

Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid ß-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.


Assuntos
Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fator 3-alfa Nuclear de Hepatócito/fisiologia , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Adulto , Idoso , Animais , Células Cultivadas , Regulação para Baixo/genética , Fígado Gorduroso/patologia , Feminino , Células Hep G2 , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Cultura Primária de Células , Ratos , Adulto Jovem
11.
Toxicol In Vitro ; 26(8): 1272-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22138474

RESUMO

In a number of adverse drug reactions leading to hepatotoxicity, drug metabolism is thought to be involved by the generation of reactive metabolites from non-toxic drugs. The use of hepatoma cell lines, such as HepG2 cell line, for the evaluation of drug-induced hepatotoxicity is hampered by their low cytochrome P450 expression which makes impossible the study of the toxicity produced by bioactivable compounds. Genetically manipulated cells constitute promising tools for hepatotoxicity applications. HepG2 cells were simultaneously transfected with recombinant adenoviruses encoding CYP1A2, CYP2C9 and CYP3A4 to confer them drug-metabolic competence. Upgraded cells (Adv-HepG2) were highly able to metabolize the toxin studied in contrast to the reduced metabolic capacity of HepG2 cells. Aflatoxin B1-induced hepatotoxicity was studied as a proof of concept in metabolically competent and non-competent HepG2 cells by using high content screening technology. Significant differences in mitochondrial membrane potential, intracellular calcium concentration, nuclear morphology and cell viability after treatment with aflatoxin B1 were observed in Adv-HepG2 when compared to HepG2 cells. Rotenone (non bioactivable) and citrate (non hepatotoxic) were analysed as negative controls. This cell model showed to be a suitable hepatic model to test hepatotoxicity of bioactivable drugs and constitutes a valuable alternative for hepatotoxicity testing.


Assuntos
Adenoviridae/genética , Aflatoxina B1/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Modelos Biológicos , Aflatoxina B1/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ácido Cítrico/administração & dosagem , Ácido Cítrico/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A/genética , Vetores Genéticos , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Rotenona/administração & dosagem , Rotenona/metabolismo , Transfecção
12.
Gastroenterol Hepatol ; 31(5): 299-309, 2008 May.
Artigo em Espanhol | MEDLINE | ID: mdl-18448061

RESUMO

Currently, the only effective treatment for end-stage liver disease is liver transplantation. The number of patients on the waiting list increases considerably each year, giving rise to a wide imbalance between supply and demand for healthy livers. Knowledge of stem cells and their possible use have awakened great interest in the field of hepatology, these cells being one of the most promising short-term alternatives. Hepatic stem cell therapy consists of the implantation of healthy cells capable of performing the functions that damaged cells are unable to carry out. Recent observations indicate that several stem cells can differentiate into distinct cell lineages. Hepatic differentiation of adult stem cells from several origins has yielded highly promising results. Adipose tissue in adults contains a reservoir of stem cells that can be induced and differentiated into different types of cells, showing a high degree of plasticity. Because of its abundance and easy access, adipose tissue is a promising source of adult stem cells for hepatic stem cell therapy. The present article reviews the progress made in the differentiation of adult stem cells from adipose tissue into cells with hepatic phenotype. We also discuss the potential application of this technique as a therapy for temporary metabolic support in patients with end-stage liver failure awaiting whole organ transplantation, as a method to support liver function and facilitate regeneration of the native liver in cases of fulminant hepatic failure, and as a treatment in patients with genetic metabolic defects in vital liver functions.


Assuntos
Tecido Adiposo/citologia , Falência Hepática/cirurgia , Transplante de Células-Tronco , Diferenciação Celular , Previsões , Hepatócitos , Humanos , Células-Tronco Mesenquimais , Fenótipo
13.
Chem Biol Interact ; 165(2): 106-16, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17188672

RESUMO

The present study was designed to define an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the metabolic and cytotoxic/apoptotic effects could be separated. This was accomplished by defining the experimental conditions of lipid exposure that lead to significant intracellular fat accumulation in the absence of overt cytotoxicity, therefore allowing to differentiate between cytotoxic and apoptotic effects. Palmitic (C16:0) and oleic (C18:1) acids are the most abundant fatty acids (FFAs) in liver triglycerides in both normal subjects and patients with nonalcoholic fatty liver disease (NAFLD). Therefore, human hepatocytes and HepG2 cells were incubated with a mixture of different proportions of saturated (palmitate) and unsaturated (oleate) FFAs to induce fat-overloading. Similar intracellular levels of lipid accumulation as in the human steatotic liver were achieved. Individual FFAs have a distinct inherent toxic potential. Fat accumulation, cytotoxicity and apoptosis in cells exposed to the FFA mixtures were investigated. The FFA mixture containing a low proportion of palmitic acid (oleate/palmitate, 2:1 ratio) is associated with minor toxic and apoptotic effects, thus representing a cellular model of steatosis that mimics benign chronic steatosis. On the other hand, a high proportion of palmitic acid (oleate/palmitate, 0:3 ratio) might represent a cellular model of steatosis in which saturated FFAs promote an acute harmful effect of fat overaccumulation in the liver. These hepatic cellular models are apparently suitable to experimentally investigate the impact of fat overaccumulation in the liver excluding other factors that could influence hepatocyte behaviour.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Graxos não Esterificados/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Técnicas In Vitro , Vermelho Neutro/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia
14.
Toxicol Lett ; 168(3): 286-91, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-17184936

RESUMO

Chromaffin cells in culture show high neuropathy target esterase (NTE) activity. It is well known that inhibition and specific modification of NTE by some organophosphorus (OPs) compounds induces a neurodegenerative neuropathy. It has been suggested that NTE is responsible for phosphatidylcholine homeostasis, although its role in neuropathy induction remains unclear. The cDNA of human NTE (4.4kbp) was inserted into an adenoviral vector. Bovine chromaffin cells cultured at 50,000 cells/well were incubated with the vector for 2h and after removing the volume of infection, cells were maintained in the incubator. After 24h, NTE activity was 6.8+/-0.5mU/10(6) cells in untreated cells and 14.8+/-1.5mU/10(6) cells, 19.3+/-2.9mU/10(6) cells, 24.8+/-0.9mU/10(6) cells and 30.9+/-1.0mU/10(6) cells in cells incubated with 2, 4, 8 and 16microl of vector, respectively. After 60min of inhibition with mipafox increased concentrations, the calculated I(50) (60min) values were 5.5, 6.2 and 6.6microM for cells infected with 0, 2 and 10microl of vector preparation. We confirm that the adenoviral vector containing the human NTE gene is active in bovine chromaffin cells in culture and that the NTE activity expressed by the vector shows the same inhibition pattern by the neuropathic OP mipafox as the NTE activity of bovine chromaffin cells and cells remained viable after the high NTE activity expression.


Assuntos
Adenoviridae/genética , Hidrolases de Éster Carboxílico/metabolismo , Células Cromafins/enzimologia , Animais , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Bovinos , Células Cultivadas , Vetores Genéticos , Humanos , Isoflurofato/análogos & derivados , Isoflurofato/toxicidade , Paraoxon/toxicidade , Transfecção , Valeratos/metabolismo
15.
World J Gastroenterol ; 12(36): 5834-45, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17007050

RESUMO

AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC. METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed. RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thy1 decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPbeta and HNF4alpha), as demonstrated by adenoviral expression vectors. CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC, but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Hepatócitos/citologia , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Adulto , Idoso , Albuminas/genética , Albuminas/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Fenótipo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Ativação Transcricional
16.
Biochim Biophys Acta ; 1761(7): 698-708, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16798076

RESUMO

SND p102 belongs to an evolutionarily conserved family of proteins first described as transcriptional coactivators, whose biological function has not yet been defined. High expression levels of homologues of SND p102 in non-nuclear compartments of lipid secretory tissues and in murine liver endoplasmic reticulum suggest a role for SND p102 in lipoprotein secretion in hepatocytes. To address this issue, after ascribing by confocal microscopy and Western blotting a non-nuclear localization of SND p102 in rat hepatocytes, we cloned its full-length cDNA, developed adenoviral vectors encoding the cDNA or a specific antisense sequence, and characterized the lipoprotein particles created and released for 24 h by transfected rat hepatocytes. The cellular ability to secrete apoB and apoA-I was not affected by SND p102 differential expression, nor was that of lipoproteins-triglyceride, -cholesterol and -cholesteryl esters. However, cells overexpressing SND p102 secreted phospholipid-rich lipoproteins. Compared with hepatocytes with basal or attenuated SND p102 expression, they secreted approximately 45% and 80% more phospholipid in d<1.015 g/mL and 1.015

Assuntos
Hepatócitos/metabolismo , Proteínas Nucleares , Fosfolipídeos/metabolismo , Animais , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Endonucleases , Feminino , Expressão Gênica , Humanos , Lipoproteínas VLDL/química , Lipoproteínas VLDL/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Ratos , Ratos Sprague-Dawley , Transativadores/biossíntese , Transativadores/genética
17.
Gastroenterol Hepatol ; 29(6): 366-76, 2006.
Artigo em Espanhol | MEDLINE | ID: mdl-16790188

RESUMO

There is an urgent need to search for alternatives to whole organ transplantation. Several methods have been proposed. Among these strategies, cell transplantation is currently one of the most promising. To achieve this aim, in addition to highly differentiated adult hepatocytes, the use of stem cells is considered a highly attractive therapeutic method for the treatment of liver disease and for temporary support of hepatic function until a liver becomes available for organ transplantation. This strategy is based on the ability of stem cells to differentiate into different cellular types according to their environment. Therefore, stem cells could be an unlimited source of hepatic cells for transplantation and gene therapy. Bone marrow is considered the most promising source of adult stem cells, partly due to the versatility of the cells obtained in repairing damaged tissues of several lineages. Several different types of stem cells have been described in bone marrow: hematopoietic, mesenchymal, side population and multipotent adult stem cells. Bone marrow cells have been hypothesized as a third recruitment source in liver regeneration in addition to hepatocytes and endogenous liver stem cells. Consequently, attempts have been made to differentiate them into hepatic lineage for their subsequent use in hepatic cell therapy. The present article reviews the progress made in this field or research.


Assuntos
Hepatócitos/transplante , Transplante de Células-Tronco , Animais , Humanos
18.
Cell Transplant ; 14(10): 837-43, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16454358

RESUMO

A major problem for the isolation and transplantation of hepatocytes is the lack of resources for obtaining viable hepatocytes. Improving this situation would enhance hepatic cell transplantation programs. Our objective was to evaluate the influence of the preservation solutions used during organ retrieval on the quality of hepatocytes isolated from liver tissue. We compared the results of the collagenase perfusion technique for isolation of hepatocytes in human livers flushed with University of Wisconsin (UW) and Celsior preservation solutions. Yield (number of viable cells per gram of tissue), cellular viability, efficiency of cells to attach to culture plates and form a monolayer, and drug metabolizing competence of the hepatocytes were measured. Successful isolation was achieved in 63% of the procedures using the UW solution and 100% of the procedures using the Celsior solution. In the UW group, significantly lower cell viability (38 +/- 41% vs. 79 +/- 14%, p < 0.05), yield of cells (4.0 +/- 5.2 x 10(6) vs. 8.2 +/- 5.6 x 10(6) cells/g, p < 0.05), and protein content at 24 h of culture (0.6 +/- 0.6 vs. 1.2 +/- 0.3 mg protein per plate, p < 0.05) than in Celsior solution were found. However, similar values of P450 activities were found in both groups. The more successful isolation, better yield, and higher cell viability obtained from human liver grafts preserved in Celsior solution, in comparison to UW solution, suggest Celsior solution as the most appropriate for preserving cadaveric hepatic tissue to be used for hepatocyte harvesting.


Assuntos
Técnicas de Cultura de Células , Separação Celular/métodos , Transplante de Células , Hepatócitos/efeitos dos fármacos , Transplante de Fígado , Soluções para Preservação de Órgãos/farmacologia , Adulto , Idoso , Cadáver , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colagenases , Dissacarídeos/farmacologia , Eletrólitos/farmacologia , Feminino , Glutamatos/farmacologia , Glutationa/farmacologia , Hepatócitos/citologia , Hepatócitos/enzimologia , Histidina/farmacologia , Humanos , Masculino , Manitol/farmacologia , Pessoa de Meia-Idade , Fatores de Tempo
19.
Toxicol Sci ; 65(2): 299-308, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11812934

RESUMO

Apoptosis may be a major event in chemical-induced injury, and therefore the detection of apoptotic effects when developing new drugs is highly relevant in screening for pharmacotoxicological risk assessment. However, as apoptosis in vitro normally degenerates to secondary necrosis, it is possible that it is underestimated, unless sensitive and specific parameters are used. In this present study we have evaluated the usefulness of a set of markers associated with the pivotal steps in the execution phase of apoptosis, in order to detect apoptotic compounds in hepatocytes before significant necrosis takes place. The markers selected include several biochemical parameters (downregulation of the antiapoptotic bclX(L) gene, caspase-3 activation, and cytochrome C release from mitochondria), and flow cytometry determinations (analysis of the size of the nuclei, chromatin complexity, and DNA integrity). The effects of several well-known model apoptotic toxicants (galactosamine, tertiary-butyl-hydroperoxide, etoposide, campothecine, and curcumin) were analyzed in hepatocytes. The aim was to identify early markers of apoptosis using known inducers of apoptosis in hepatocytes, as this battery of markers is designed to identify compounds triggering apoptosis in hepatocytes prior to necrosis. Concentrations of the compounds, as low as possible in order to keep 90% of hepatocyte viability, were selected according to their intracellular lactate dehydrogenase (LDH) leakage, which is well known as an indicator of cell membrane integrity and cell viability. The results demonstrated that (1) the apoptotic effect of 4 out of 5 compounds could be detected in low concentrations of the drugs long before cell necrosis (tertiary-butyl-hydroperoxide-induced apoptosis was only detected at concentrations causing concomitant necrosis) and (2) among the markers evaluated, caspase 3 activation and nucleus and DNA analysis by flow cytometry were used to fulfil the compromise between reliability, sensitivity, and ease of performance, which are critical issues when screening for an apoptotic effect of newly developed drugs.


Assuntos
Apoptose/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Xenobióticos/toxicidade , Animais , Biomarcadores/análise , Camptotecina/toxicidade , Caspase 3 , Caspases/biossíntese , Células Cultivadas , Curcumina/toxicidade , Grupo dos Citocromos c/metabolismo , DNA/análise , Fragmentação do DNA/fisiologia , Regulação para Baixo , Etoposídeo/toxicidade , Citometria de Fluxo , Galactosamina/toxicidade , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Proteína bcl-X , terc-Butil Hidroperóxido/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA