Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Metabolism ; 115: 154460, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285180

RESUMO

BACKGROUND: Reproduction is tightly coupled to body energy and metabolic status. GnRH neurons, master elements and final output pathway for the brain control of reproduction, directly or indirectly receive and integrate multiple metabolic cues to regulate reproductive function. Yet, the molecular underpinnings of such phenomenon remain largely unfolded. AMP-activated protein kinase (AMPK), the fundamental cellular sensor that becomes activated in conditions of energy deficit, has been recently shown to participate in the control of Kiss1 neurons, essential gatekeepers of the reproductive axis, by driving an inhibitory valence in situations of energy scarcity at puberty. However, the contribution of AMPK signaling specifically in GnRH neurons to the metabolic control of reproduction remains unknown. METHODS: Double immunohistochemistry (IHC) was applied to evaluate expression of active (phosphorylated) AMPK in GnRH neurons and a novel mouse line, named GAMKO, with conditional ablation of the AMPK α1 subunit in GnRH neurons, was generated. GAMKO mice of both sexes were subjected to reproductive characterization, with attention to puberty and gonadotropic responses to kisspeptin and metabolic stress. RESULTS: A vast majority (>95%) of GnRH neurons co-expressed pAMPK. Female (but not male) GAMKO mice displayed earlier puberty onset and exaggerated LH (as surrogate marker of GnRH) responses to kisspeptin-10 at the prepubertal age. In adulthood, GAMKO females retained increased LH responsiveness to kisspeptin and showed partial resilience to the inhibitory effects of conditions of negative energy balance on the gonadotropic axis. The modulatory role of AMPK in GnRH neurons required preserved ovarian function, since the differences in LH pulsatility detected between GAMKO and control mice subjected to fasting were abolished in ovariectomized animals. CONCLUSIONS: Altogether, our data document a sex-biased, physiological role of AMPK signaling in GnRH neurons, as molecular conduit of the inhibitory actions of conditions of energy deficit on the female reproductive axis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/sangue , Neurônios/metabolismo , Reprodução/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Ciclo Estral/metabolismo , Feminino , Kisspeptinas/farmacologia , Masculino , Desnutrição/metabolismo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Fosforilação , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
2.
Colorectal Dis ; 21(8): 903-908, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30963654

RESUMO

AIM: Robotic techniques are being increasingly used in colorectal surgery. There is, however, a lack of training opportunities and structured training programmes. Robotic surgery has specific problems and challenges for trainers and trainees. Ergonomics, specific skills and user-machine interfaces are different from those in traditional laparoscopic surgery. The aim of this study was to establish expert consensus on the requirements for a robotic train-the-trainer curriculum amongst robotic surgeons and trainers. METHOD: This is a modified Delphi-type study involving 14 experts in robotic surgery teaching. A reiterating 19-item questionnaire was sent out to the same group and agreement levels analysed. A consensus of 0.8 or higher was considered to be high-level agreement. RESULTS: Response rates were 93-100% and most items reached high levels of agreement within three rounds. Specific requirements for a robotic faculty development curriculum included maximizing dual-console teaching, theatre team training, nontechnical skills training, patient safety, user-machine interface training and telementoring. CONCLUSION: A clear need for the development of a train-the-trainer curriculum has been identified. Further research is needed to assess feasibility, effectiveness and clinical impact of a robotic train-the-trainer curriculum.


Assuntos
Cirurgia Colorretal/educação , Currículo/normas , Procedimentos Cirúrgicos Robóticos/educação , Capacitação de Professores/normas , Adulto , Consenso , Técnica Delphi , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Nat Commun ; 9(1): 4194, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305620

RESUMO

Puberty is regulated by epigenetic mechanisms and is highly sensitive to metabolic and nutritional cues. However, the epigenetic pathways mediating the effects of nutrition and obesity on pubertal timing are unknown. Here, we identify Sirtuin 1 (SIRT1), a fuel-sensing deacetylase, as a molecule that restrains female puberty via epigenetic repression of the puberty-activating gene, Kiss1. SIRT1 is expressed in hypothalamic Kiss1 neurons and suppresses Kiss1 expression. SIRT1 interacts with the Polycomb silencing complex to decrease Kiss1 promoter activity. As puberty approaches, SIRT1 is evicted from the Kiss1 promoter facilitating a repressive-to-permissive switch in chromatin landscape. Early-onset overnutrition accelerates these changes, enhances Kiss1 expression and advances puberty. In contrast, undernutrition raises SIRT1 levels, protracts Kiss1 repression and delays puberty. This delay is mimicked by central pharmacological activation of SIRT1 or SIRT1 overexpression, achieved via transgenesis or virogenetic targeting to the ARC. Our results identify SIRT1-mediated inhibition of Kiss1 as key epigenetic mechanism by which nutritional cues and obesity influence mammalian puberty.


Assuntos
Epigênese Genética , Kisspeptinas/genética , Fenômenos Fisiológicos da Nutrição , Obesidade/metabolismo , Maturidade Sexual , Sirtuína 1/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Cromatina/metabolismo , Feminino , Histonas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Estado Nutricional , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Fatores de Tempo
4.
Clin Transl Oncol ; 20(9): 1161-1167, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29374351

RESUMO

PURPOSE: Increasing evidence shows that altered metabolism is a critical hallmark in colon cancer. There is a strong need to explore the molecular mechanisms underlying cancer metabolism. Whether the aberrant expression of microRNAs contributes to cancer metabolism is not fully understood. miR-328 is a putative potential target of SLC2A1, but the regulating mechanism between them remains unknown. We have examined whether miR-328 directly regulates SLC2A1/GLUT1 expression in colon cancer cells. METHODS: We performed in silico bioinformatic analyses to identify miR-328-mediated molecular pathways and targets. We also performed luciferase assays and western blot analyses in LOVO and SW480 colon cancer cell lines. In addition, we assessed miR-328 expression in 47 paired tumor and normal tissue specimens from resected colon cancer patients. RESULTS: Luciferase reporter assays showed that miR-328 directly targeted SLC2A1 3'-untranslated region (UTR), with a significant decrease in luciferase activity in both LOVO and SW480 cell lines. These results were validated by western blot. miR-328 expression was significantly downregulated in tumor tissue compared with paired normal tissue. CONCLUSIONS: Our results show that miR-328 targets SLC2A1/GLUT1. We suggest that miR-328 may be involved in the orchestration of the Warburg effect in colon cancer cells. Furthermore, miR-328 expression is reduced in colon cancer patients and thus inversely correlates with the classically reported upregulated SLC2A1/GLUT1 expression in tumors.


Assuntos
Neoplasias do Colo/metabolismo , Transportador de Glucose Tipo 1/genética , MicroRNAs/fisiologia , Regiões 3' não Traduzidas , Idoso , Linhagem Celular Tumoral , Feminino , Transportador de Glucose Tipo 1/fisiologia , Humanos , Masculino
5.
Blood Cancer J ; 5: e352, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26430723

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML.


Assuntos
Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Adolescente , Adulto , Idoso , Análise Citogenética , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Transcriptoma , Adulto Jovem
6.
Best Pract Res Clin Obstet Gynaecol ; 29(4): 554-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770750

RESUMO

Since the 1980s, minimally invasive techniques have been applied to an increasing number and variety of surgical procedures with a gradual increase in the complexity of procedures being successfully performed laparoscopically. In the past, obesity was considered a contraindication to laparoscopy due to the higher risk of co-morbid conditions such as diabetes, hypertension, coronary artery disease and venous thromboembolism. Performing laparoscopic gynaecological procedures in morbidly obese patients is no longer a rare phenomenon; however, it does necessitate changes in clinical practice patterns. Understanding of the physiological changes induced by laparoscopy, particularly in obese patients, is important so that these may be counteracted and adverse outcomes avoided. Laparoscopy in obese patients confers certain advantages such as shorter hospital stay, less post-operative pain and fewer wound infections. In addition to these benefits, minimal-access surgery has been demonstrated as safe and effective in obese patients; however, specific surgical strategies and operative techniques may need to be adopted.


Assuntos
Neoplasias dos Genitais Femininos/cirurgia , Procedimentos Cirúrgicos em Ginecologia/métodos , Laparoscopia/métodos , Obesidade Mórbida/complicações , Complicações Pós-Operatórias , Feminino , Doenças dos Genitais Femininos/complicações , Doenças dos Genitais Femininos/cirurgia , Neoplasias dos Genitais Femininos/complicações , Humanos , Tempo de Internação , Obesidade/complicações , Dor Pós-Operatória , Posicionamento do Paciente/métodos , Pneumoperitônio Artificial/métodos , Infecção da Ferida Cirúrgica
7.
Cell Death Dis ; 5: e1573, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25522267

RESUMO

Mitochondrial alterations are critically involved in increased vulnerability to disease during aging. We investigated the contribution of mitochondria-sarcoplasmic reticulum (SR) communication in cardiomyocyte functional alterations during aging. Heart function (echocardiography) and ATP/phosphocreatine (NMR spectroscopy) were preserved in hearts from old mice (>20 months) with respect to young mice (5-6 months). Mitochondrial membrane potential and resting O2 consumption were similar in mitochondria from young and old hearts. However, maximal ADP-stimulated O2 consumption was specifically reduced in interfibrillar mitochondria from aged hearts. Second generation proteomics disclosed an increased mitochondrial protein oxidation in advanced age. Because energy production and oxidative status are regulated by mitochondrial Ca2+, we investigated the effect of age on mitochondrial Ca2+ uptake. Although no age-dependent differences were found in Ca2+ uptake kinetics in isolated mitochondria, mitochondrial Ca2+ uptake secondary to SR Ca2+ release was significantly reduced in cardiomyocytes from old hearts, and this effect was associated with decreased NAD(P)H regeneration and increased mitochondrial ROS upon increased contractile activity. Immunofluorescence and proximity ligation assay identified the defective communication between mitochondrial voltage-dependent anion channel and SR ryanodine receptor (RyR) in cardiomyocytes from aged hearts associated with altered Ca2+ handling. Age-dependent alterations in SR Ca2+ transfer to mitochondria and in Ca2+ handling could be reproduced in cardiomyoctes from young hearts after interorganelle disruption with colchicine, at concentrations that had no effect in aged cardiomyocytes or isolated mitochondria. Thus, defective SR-mitochondria communication underlies inefficient interorganelle Ca2+ exchange that contributes to energy demand/supply mistmach and oxidative stress in the aged heart.


Assuntos
Envelhecimento/metabolismo , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Retículo Sarcoplasmático/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Feminino , Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Oxirredução , Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
8.
Atherosclerosis ; 227(1): 79-88, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23312784

RESUMO

Sterol regulatory element-binding proteins (SREBPs) negatively modulate the expression of the CD91/low-density lipoprotein receptor-related protein (LRP1), a carrier and signaling receptor that mediates the endocytosis of more than 40 structurally and functionally distinct ligands. The aim of this work was to analyze whether lipopolysaccharide (LPS) can regulate LRP1 expression through SREBPs in human monocyte-derived macrophages (HMDM). LPS led to LRP1 mRNA and protein inhibition in a dose- and time-dependent manner. Concomitantly, a strong upregulation of SREBP-1 mRNA and SREBP-1 nuclear protein levels was observed in LPS-treated HMDM. The specific silencing of SREBP-1 efficiently prevented LRP1 reduction caused by LPS. SREBP-1 mRNA and nuclear protein levels remained high in HMDM treated with LPS unexposed or exposed to LDL. Native (nLDL) or aggregated LDL (agLDL) per se downregulated SREBP-2 expression levels and increased LRP1 expression. However, lipoproteins did not significantly alter the effect of LPS on SREBP-1 and LRP1 expression. Collectively, these data support that lipoproteins and LPS exert their modulatory effect on LRP1 expression through different SREBP isoforms, SREBP-2 and SREBP-1, respectively. These results highlight a crucial role of SREBP-1 as a mediator of the downregulatory effects of LPS on LRP1 expression in human macrophages, independently of the absence or presence of modified lipoproteins.


Assuntos
Lipopolissacarídeos/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Macrófagos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Regulação para Baixo , Humanos , Macrófagos/efeitos dos fármacos , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo
9.
Bone Marrow Transplant ; 48(3): 396-402, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22858507

RESUMO

The potential impact on patient outcome of different Minimal residual disease (MRD) levels at time of transplant in patients with lymphoblastic leukemia undergoing allogeneic hematopoietic SCT (HSCT) remains uncertain. In this study, we quantified MRD levels at time of transplant using multiparameter flow cytometry (MFC). Mononuclear cells from marrow aspirates were obtained from 102 adult and child patients before their conditioning regimen. Quantification of MRD levels was carried out by detecting patient-specific leukemia-associated immunophenotypes using four-color MFC. Thirty patients exhibited measurable levels of MRD at the time of transplant, with low levels (0.01 to 0.1%) in 12 cases, intermediate levels (>0.1 to 1%) in 8 cases and high levels (>1%) in 10 cases. The leukemia-free survival (LFS) rates were 65.9±7.0%, 42.9±15.7% and 0% for negative, low levels 0.1% and intermediate-high levels >0.1%, respectively (P<0.001, log-rank test). Overall survival (OS) was 52.3±7.6%, 28.6±13.8% and 0% for MRD-negative, low levels 0.1% and intermediate-high levels >0.1%, respectively (P<0.001, log-rank test). Multivariate Cox analysis confirmed that detection of leukemia cells by flow cytometry at transplant was the most significantly adverse factor for OS, LFS and EFS after transplant.


Assuntos
Citometria de Fluxo/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/cirurgia , Adolescente , Criança , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Masculino , Neoplasia Residual , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Transplante Homólogo , Resultado do Tratamento
10.
J Endocrinol Invest ; 34(10): e362-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21697647

RESUMO

BACKGROUND: The 5'-AMP-activated protein kinase (AMPK) plays a fundamental role in regulating energy homeostasis as well as feeding and metabolism, through central and peripheral actions. AMPK is activated by conditions causing ATP depletion and by different metabolic molecules, such as adiponectin and AMPK agonist, such as 5-aminoimidazole- 4-carboxamide-1-ß-D-ribofuranoside (AICAR). AMPK activation has also been shown to affect the migration of different cell types and to participate in the central control of reproductive function, although information concerning AMPK and the development of the hypothalamic reproductive compartment is lacking. AIM: To explore whether AMPK activation by globular adiponectin (gAdipo) and AICAR may affect the migratory ability of GnRH neurons. MATERIALS AND METHODS: We used GN11 immature GnRH neurons (in vitro model system), RT-PCR and Western blot analysis, and Boyden's chamber assay. RESULTS: gAdipo did not affect FBS-stimulated migration of GN11 cells and activated AMPK through the mandatory phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and Akt, which also interact one to each other. AICAR treatment inhibited FBS-stimulated GN11 cell migration, through a long-lasting activation of AMPK. A downstream activation of ERK1/2 by AICAR was also observed and inhibition of ERK1/2 amplified AICAR-induced inhibition of migration. CONCLUSIONS: The direct, but not the indirect, activation of AMPK appears to negatively affect FBSinduced GN11 cell migration, suggesting that the final balance between pro-migratory and anti-migratory actions may also depend upon the specific sequence of intracellular signals activated by one agent.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Aminoimidazol Carboxamida/farmacologia , Movimento Celular/efeitos dos fármacos , Neurônios/fisiologia , Adiponectina/farmacologia , Animais , Linhagem Celular , Ativação Enzimática , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores de Adiponectina/biossíntese
11.
J Neuroendocrinol ; 23(4): 365-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21314736

RESUMO

Much attention has been drawn to the possible involvement of hypothalamic inflammation in the pathogenesis of metabolic disorders, especially in response to a high-fat diet. Microglia, the macrophages of the central nervous system, can be activated by proinflammatory signals resulting in the local production of specific interleukins and cytokines, which in turn could exacerbate the pathogenic process. Because obesity itself is considered to be a state of chronic inflammation, we evaluated whether being overweight results in microglial activation in the hypothalamus of rats on a normal diet. Accordingly, we used a model of neonatal overnutrition that entailed adjustment of litter size at birth (small litters: four pups/dam versus normal litters: 12 pups/dam) and resulted in a 15% increase in bodyweight and increased circulating leptin levels at postnatal day 60. Rats that were overnourished during neonatal life had an increased number of activated microglia in specific hypothalamic areas such as the ventromedial hypothalamus, which is an important site for metabolic control. However, this effect was not confined to the hypothalamus because significant microglial activation was also observed in the cerebellar white matter. There was no change in circulating tumour necrosis factor (TNF) α levels or TNFα mRNA levels in either the hypothalamus or cerebellum. Interleukin (IL)6 protein levels were higher in both the hypothalamus and cerebellum, with no change in IL6 mRNA levels. Because circulating IL6 levels were elevated, this rise in central IL6 could be a result of increased uptake. Thus, activation of microglia occurs in adult rats exposed to neonatal overnutrition and a moderate increase in weight gain on a normal diet, possibly representing a secondary response to systemic inflammation. Moreover, this activation could result in local changes in specific hypothalamic nuclei that in turn further deregulate metabolic homeostasis.


Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Microglia/metabolismo , Hipernutrição/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Feminino , Homeostase , Interleucina-6/genética , Interleucina-6/metabolismo , Leptina/sangue , Complexo Principal de Histocompatibilidade , Masculino , Microglia/citologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Am J Physiol Endocrinol Metab ; 299(1): E54-61, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20407007

RESUMO

Severe inflammatory challenges are frequently coupled to decreased food intake and disruption of reproductive function, the latter via deregulation of different signaling pathways that impinge onto GnRH neurons. Recently, the hypothalamic Kiss1 system, a major gatekeeper of GnRH function, was suggested as potential target for transmitting immune-mediated repression of the gonadotropic axis during acute inflammation, and yet key facets of such a phenomenon remain ill defined. Using lipopolysaccharide S (LPS)-treated male rats as model of inflammation, we document herein the pattern of hypothalamic kisspeptin immunoreactivity (IR) and hormonal responses to kisspeptin during the acute inflammatory phase. LPS injections induced a dramatic but transient drop of serum LH and testosterone levels. Suppression of gonadotropic function was associated with a significant decrease in kisspeptin-IR in the arcuate nucleus (ARC) that was not observed under conditions of metabolic stress induced by 48-h fasting. In addition, absolute responses to kisspeptin-10 (Kp-10), in terms of LH and testosterone secretion, were significantly attenuated in LPS-treated males that also displayed a decrease in food intake and body weight. Yet pair-fed males did not show similar alterations in LH and testosterone secretory responses to Kp-10, whose magnitude was preserved, if not augmented, during food restriction. In summary, our data document the impact of acute inflammation on kisspeptin content at the ARC as key center for the neuroendocrine control of reproduction. Our results also suggest that suppressed gonadotropic function following inflammatory challenges might involve a reduction in absolute responsiveness to kisspeptin that is independent of the anorectic effects of inflammation.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiopatologia , Hipogonadismo/fisiopatologia , Inflamação/fisiopatologia , Hormônio Luteinizante/fisiologia , Oligopeptídeos/fisiologia , Testosterona/fisiologia , Animais , Área Sob a Curva , Ingestão de Alimentos/fisiologia , Imuno-Histoquímica , Kisspeptinas , Hormônio Luteinizante/sangue , Masculino , Ratos , Ratos Wistar , Testosterona/sangue
13.
Endocrinology ; 150(11): 5016-26, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734277

RESUMO

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that operates as sensor of cellular energy status and effector for its coupling to cell growth and proliferation. At the hypothalamic arcuate nucleus, mTOR signaling has been recently proposed as transducer for leptin effects on energy homeostasis and food intake. However, whether central mTOR also participates in metabolic regulation of fertility remains unexplored. We provide herein evidence for the involvement of mTOR in the control of puberty onset and LH secretion, likely via modulation of hypothalamic expression of Kiss1. Acute activation of mTOR by l-leucine stimulated LH secretion in pubertal female rats, whereas chronic l-leucine infusion partially rescued the state of hypogonadotropism induced by food restriction. Conversely, blockade of central mTOR signaling by rapamycin caused inhibition of the gonadotropic axis at puberty, with significantly delayed vaginal opening, decreased LH and estradiol levels, and ovarian and uterine atrophy. Inactivation of mTOR also blunted the positive effects of leptin on puberty onset in food-restricted females. Yet the GnRH/LH system retained their ability to respond to ovariectomy and kisspeptin-10 after sustained blockade of mTOR, ruling out the possibility of unspecific disruption of GnRH function by rapamycin. Finally, mTOR inactivation evoked a significant decrease of Kiss1 expression at the hypothalamus, with dramatic suppression of Kiss1 mRNA levels at the arcuate nucleus. Altogether our results unveil the role of central mTOR signaling in the control of puberty onset and gonadotropin secretion, a phenomenon that involves the regulation of Kiss1 and may contribute to the functional coupling between energy balance and gonadal activation and function.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/enzimologia , Proteínas Quinases/metabolismo , Proteínas/genética , Animais , Ingestão de Alimentos , Feminino , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Kisspeptinas , Leucina/metabolismo , Hormônio Luteinizante/metabolismo , Proteínas Quinases/genética , Proteínas/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR
14.
Endocrinology ; 150(6): 2889-97, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19228890

RESUMO

Spontaneously hypertensive (SH) rats, extensively used as experimental models of essential human hypertension, display important alterations in the neuroendocrine reproductive axis, which manifest as markedly delayed puberty onset in females but whose basis remains largely unknown. We analyze herein in female SH rats: 1) possible alterations in the expression and function of KiSS-1/GPR54 and GnRH/GnRH-receptor systems, 2) the integrity of feedback mechanisms governing the hypothalamic-pituitary-ovarian axis, and 3) the control of ovarian function by gonadotropins. Our data demonstrate that, despite overtly delayed puberty, no significant decrease in hypothalamic KiSS-1, GPR54, or GnRH mRNA levels was detected in this strain. Likewise, in vivo gonadotropin responses to ovariectomy and systemic kisspeptin-10 or GnRH administration, as well as in vitro gonadotropin responses to GnRH, were fully preserved in SH rats. Moreover, circulating LH levels were grossly conserved during prepubertal maturation, whereas FSH levels were even enhanced from d 20 postpartum onwards. In striking contrast, ovarian weight and hormone (progesterone and testosterone) responses to human chorionic gonadotropin (CG) in vitro were profoundly decreased in SH rats, with impaired follicular development and delayed ovulation at puberty. Such reduced hormonal responses to human CG could not be attributed to changes in LH/CG or FSH-receptor mRNA expression but might be linked to blunted P450scc, 3beta-hydroxy steroid dehydrogenase, and aromatase mRNA levels in ovaries from SH rats. In conclusion, our results indicate that the expression and function of KiSS-1/GPR54 and GnRH/GnRH-receptor systems is normal in SH rats, whereas ovarian development, steroidogenesis, and responsiveness to gonadotropins are strongly compromised.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipertensão/fisiopatologia , Hipotálamo/metabolismo , Insuficiência Ovariana Primária/fisiopatologia , Proteínas/metabolismo , Puberdade Tardia/fisiopatologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Gonadotropina Coriônica/farmacologia , Modelos Animais de Doenças , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/farmacologia , Hipertensão/metabolismo , Kisspeptinas , Hormônio Luteinizante/sangue , Masculino , Ovariectomia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/fisiopatologia , Insuficiência Ovariana Primária/metabolismo , Puberdade Tardia/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de Kisspeptina-1 , Transdução de Sinais/fisiologia
15.
Am J Physiol Endocrinol Metab ; 296(3): E520-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19141682

RESUMO

Kisspeptins, the products of the KiSS-1 gene acting via G protein-coupled receptor 54 (GPR54), have recently emerged as pivotal signals in the hypothalamic network triggering the preovulatory surge of gonadotropins and, hence, ovulation. Additional actions of kisspeptins at other levels of the hypothalamic-pituitary-ovarian axis have been suggested but remain to date scarcely studied. We report herein the pattern of expression of KiSS-1 and GPR54 in the human and nonhuman primate ovary and evaluate changes in ovarian KiSS-1 expression in a rat model of ovulatory dysfunction. KiSS-1 and GPR54 mRNAs were detected in human ovarian tissue and cultured granulosa-lutein cells. In good agreement, kisspeptin immunoreactivity was observed in cyclic human and marmoset ovaries, with prominent signals in the theca layer of growing follicles, corpora lutea, interstitial gland, and ovarian surface epithelium. GPR54 immunoreactivity was also found in human theca and luteal cells. Administration of indomethacin to cyclic female rats disturbed ovulation and resulted in a dramatic drop in ovarian KiSS-1, but not GPR54, cyclooxygenase-2 (COX-2), or progesterone receptor, mRNA levels at the time of ovulation; an effect mimicked by the selective COX-2 inhibitor NS398 and rescued by coadministration of PGE(2). Likewise, the stimulatory effect of human choriogonadotropin on ovarian KiSS-1 expression was partially blunted by indomethacin. In contrast, KiSS-1 mRNA levels remained unaltered in another model of ovulatory failure, i.e., the RU486-treated rat. In summary, we document for the first time the expression of KiSS-1/kisspeptin and GPR54 in the human and nonhuman primate ovary. In addition, we provide evidence for the ability of inhibitors of COX-2, known to disturb follicular rupture and ovulation, to selectively alter the expression of KiSS-1 gene in rat ovary. Altogether, our results are suggestive of a conserved role of local KiSS-1 in the direct control of ovarian functions in mammals.


Assuntos
Doenças Ovarianas/fisiopatologia , Ovário/fisiologia , Proteínas/genética , Proteínas Supressoras de Tumor/genética , Animais , Callithrix , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/farmacologia , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Humanos , Indometacina/toxicidade , Kisspeptinas , Mamíferos , Doenças Ovarianas/induzido quimicamente , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tocolíticos/toxicidade , Proteínas Supressoras de Tumor/metabolismo
16.
Peptides ; 30(1): 57-66, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18793689

RESUMO

Kisspeptins, the products of KiSS-1 gene acting via G protein-coupled receptor 54 (GPR54), have recently emerged as fundamental gatekeepers of gonadal function by virtue of their ability to stimulate gonadotropin secretion. Indeed, since the original disclosure of the reproductive facet of the KiSS-1/GPR54 system, an ever-growing number of studies have substantiated the extraordinary potency of kisspeptins to elicit gonadotropin secretion in different mammalian species, under different physiologic and experimental conditions, and through different routes of administration. In this context, studies conducted in laboratory rodents have been enormously instrumental to characterize: (i) the primary mechanisms of action of kisspeptins in the control of gonadotropin secretion; (ii) the pharmacological consequences of acute vs. continuous activation of GPR54; (iii) the roles of specific populations of kisspeptin-producing neurons at the hypothalamus in mediating the feedback effects of sex steroids; (v) the function of kisspeptins in the generation of the pre-ovulatory surge of gonadotropins; and (iv) the influence of sex steroids on GnRH/gonadotropin responsiveness to kisspeptins. While some of those aspects of kisspeptin function will be covered elsewhere in this Special Issue, we summarize herein the most salient data, obtained in laboratory rodents, that have helped to define the physiologic roles and putative pharmacological implications of kisspeptins in the control of male and female gonadotropic axis.


Assuntos
Gonadotropinas/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Hormônios Esteroides Gonadais/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas , Masculino , Camundongos , Receptores de Kisspeptina-1 , Reprodução/fisiologia , Transdução de Sinais/fisiologia
17.
Peptides ; 30(1): 139-45, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18634841

RESUMO

It is well established that reproductive function is gated by the state of energy reserves of the organism; conditions of metabolic stress and energy insufficiency being frequently coupled to disturbed reproductive maturation and/or infertility. In addition, obesity is also commonly linked to altered puberty onset and reproductive impairment. Such an impact of energy status on the reproductive axis is conveyed through a number of neuropeptide hormones and metabolic cues, whose nature and mechanisms of action have begun to be deciphered only in recent years. In this context, the emergence of kisspeptins, encoded by the KiSS-1 gene, and their receptor, GPR54, as indispensable signals for normal pubertal maturation and gonadal function, has raised the possibility that the KiSS-1/GRP54 system might also participate in coupling body energy status and reproduction. We revise herein the experimental evidence, gathered in rodent models, supporting the contention that the hypothalamic KiSS-1 system operates as a central conduit for conveying metabolic information onto the centers governing reproductive function, through a putative leptin-kisspeptin-GnRH pathway. Admittedly, key aspects of this 'metabolic' network involving the KiSS-1 system, such as its different peripheral regulators and central effectors, have not been fully elucidated. Nonetheless, the proposed hypothalamic circuitry, responsible for transmitting metabolic information onto the reproductive axis through KiSS-1 neurons, might explain, at least in part, the mechanisms for the well-known alterations of fertility linked to conditions of disturbed energy balance in humans, from anorexia nervosa to morbid obesity.


Assuntos
Reprodução/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Metabolismo Energético , Fertilidade/fisiologia , Gônadas/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Leptina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Supressoras de Tumor/genética
18.
Endocrinology ; 150(2): 784-94, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18845637

RESUMO

Using long-term streptozotocin (STZ)-treated male rats, we recently proposed that defective function of hypothalamic KiSS-1 system is mechanistically relevant for central hypogonadotropism of uncontrolled diabetes. However, the temporal pattern of such defects and its potential contribution to disturbed gonadotropin secretion in the diabetic female remain so far unexplored. To cover these issues, expression analyses and hormonal tests were conducted in diabetic male (1 wk after STZ; short term) and female (4 wk after STZ; long term) rats. Short-term diabetic males had lower basal testosterone levels and decreased gonadotropin responses to orchidectomy (ORX), which associated with significantly attenuated post-ORX rises of hypothalamic KiSS-1 mRNA. Yet kisspeptin administration to diabetic males was able to acutely elicit supramaximal LH and testosterone responses and normalize post-ORX gonadotropin secretion. Long-term diabetic females showed persistent anestrus and significantly decreased basal gonadotropin levels as well as blunted LH responses to ovariectomy; changes that were linked to lowering of basal and postovariectomy expression of hypothalamic KiSS-1 mRNA. Moreover, despite prevailing gonadotropin suppression, LH responses to acute kisspeptin administration were fully preserved, and even enhanced after its repeated injection, in diabetic females. In sum, our present findings further define the temporal course and mechanistic relevance of altered hypothalamic KiSS-1 system in the hypogonadotropic state of uncontrolled diabetes. Furthermore, our data provide the basis for the potential therapeutic intervention of the KiSS-1 system as adjuvant in the management of disturbed gonadotropin secretion of type 1 diabetes in the female.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Hipotálamo/metabolismo , Proteínas/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Hipotálamo/fisiopatologia , Kisspeptinas , Hormônio Luteinizante/metabolismo , Masculino , Orquiectomia/veterinária , Ovariectomia/veterinária , Proteínas/genética , Proteínas/metabolismo , Proteínas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Estreptozocina , Testosterona/metabolismo , Fatores de Tempo
19.
Endocrinology ; 150(5): 2359-67, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19106226

RESUMO

Attainment of reproductive capacity at puberty relies on a complex series of maturational events that include sexual differentiation of the brain; a hormonally driven phenomenon that takes place at early stages of development (critical period). Alterations of sex steroid milieu during such critical period disrupt pubertal maturation and gonadotropic function later in life, through mechanisms that remain partially unknown. Kisspeptins, products of the KiSS-1 gene acting via G protein-coupled receptor 54, have recently emerged as essential gatekeepers of puberty onset and reproductive function. By using rat models of neonatal administration of estrogenic compounds, we provide herein compelling evidence for the functional impairment of the hypothalamic KiSS-1 system at the time preceding puberty after early inappropriate exposures during brain sex differentiation. Neonatal injection of estradiol benzoate to male and female rats resulted in a dose-dependent decrease in hypothalamic KiSS-1 mRNA levels at the prepubertal stage, linked to lowering of serum LH concentrations. Yet, despite persistently decreased basal gonadotropin levels in estrogenized animals, intracerebral injection of kisspeptin evoked potent LH and FSH secretory responses, similar in magnitude to those of control animals. Estrogenized rats also showed defective levels of hypothalamic KiSS-1 mRNA and circulating gonadotropins in response to gonadectomy, whereas exogenous kisspeptin was capable to enhance further LH and FSH secretion in this model. Finally, protocols of neonatal exposure to high doses of an environmentally relevant estrogen, bisphenol-A, mimicked the effects of estradiol benzoate in terms of hypothalamic expression of KiSS-1 gene at the prepubertal period. Altogether, our data document the sensitivity of the hypothalamic KiSS-1 system to alterations in sex steroid milieu during critical periods of brain sex differentiation, and suggest that lowering of endogenous kisspeptin tone induced by early exposures to xeno-estrogens might be mechanistically relevant for disruption of gonadotropin secretion and puberty onset later in life.


Assuntos
Encéfalo/efeitos dos fármacos , Estrogênios/farmacologia , Hipotálamo/efeitos dos fármacos , Proteínas/metabolismo , Diferenciação Sexual/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Compostos Benzidrílicos , Encéfalo/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Gonadotropinas/sangue , Gonadotropinas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas , Masculino , Orquiectomia , Fenóis/farmacologia , Proteínas/genética , Proteínas/farmacologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/genética , Fatores de Tempo
20.
Endocrinology ; 149(11): 5783-90, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18635654

RESUMO

Ovulation is triggered by the preovulatory surge of gonadotropins that, in rodents, is defined by the concomitant rise in circulating LH and FSH at the afternoon of proestrus (primary surge), followed by persistently elevated FSH levels at early estrus (secondary surge). In recent years, kisspeptins, products of the KiSS-1 gene that act via G protein-coupled receptor 54, have emerged as an essential hypothalamic conduit for the generation of the preovulatory LH surge by conveying positive feedback effects of estradiol onto GnRH neurons, an event that involves not only estradiol-induced transcription of the KiSS-1 gene at the anteroventral periventricular nucleus but also its ability to modulate GnRH/LH responses to kisspeptin. However, little is known about the potential modulation of FSH responsiveness to kisspeptin by sex steroids in the cyclic female. We report herein analyses on the consequences of selective blockade of estrogen receptors (ER)-alpha and -beta, as well as progesterone receptor (PR), on the ovulatory surges of FSH and their modulation by kisspeptin. Antagonism of ERalpha or PR equally blunted the primary and secondary surges of FSH and nullified FSH responses to kisspeptin at the preovulatory period. Conversely, selective blockade of ERbeta failed to induce major changes in terms of endogenous FSH surges, yet it decreased FSH responses to exogenous kisspeptin. In contrast, FSH responses to GnRH were fully conserved after ERbeta blockade and partially preserved after inhibition of ERalpha and PR signaling. Finally, secondary FSH secretion was rescued by kisspeptin in females with selective blockade of ERalpha but not PR. In sum, our results substantiate a concurrent, indispensable role of ERalpha and PR in the generation of FSH surges and the stimulation of FSH responses to kisspeptin at the ovulatory period. In addition, our data suggest that ERbeta might operate as a subtle, positive modulator of the preovulatory FSH responses to kisspeptin, a role that is opposite to its putative inhibitory action on kisspeptin-induced LH secretion and might contribute to the dissociation of gonadotropin secretion at the ovulatory phase in the cyclic female rat.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Fase Folicular/efeitos dos fármacos , Proteínas/farmacologia , Receptores de Estrogênio/fisiologia , Receptores de Progesterona/fisiologia , Animais , Estrenos/farmacologia , Feminino , Hormônio Foliculoestimulante/sangue , Fase Folicular/sangue , Fase Folicular/metabolismo , Furanos/farmacologia , Antagonistas de Hormônios/farmacologia , Kisspeptinas , Proteínas/fisiologia , Ratos , Ratos Wistar , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Progesterona/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA