Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 48, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365720

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified genetic variants linked to fat metabolism and related traits, but rarely pinpoint causative variants. This limitation arises from GWAS not considering functional implications of noncoding variants that can affect transcription factor binding and potentially regulate gene expression. The aim of this study is to investigate a candidate noncoding functional variant within a genetic locus flagged by a GWAS SNP associated with non-alcoholic fatty liver disease (NAFLD), a condition characterized by liver fat accumulation in non-alcohol consumers. METHODS: CRISPR-Cas9 gene editing in HepG2 cells was used to modify the regulatory element containing the candidate functional variant linked to NAFLD. Global gene expression in mutant cells was assessed through RT-qPCR and targeted transcriptomics. A phenotypic assay measured lipid droplet accumulation in the CRISPR-Cas9 mutants. RESULTS: The candidate functional variant, rs2294510, closely linked to the NAFLD-associated GWAS SNP rs11206226, resided in a regulatory element within the DIO1 gene's promoter region. Altering this element resulted in changes in transcription factor binding sites and differential expression of candidate target genes like DIO1, TMEM59, DHCR24, and LDLRAD1, potentially influencing the NAFLD phenotype. Mutant HepG2 cells exhibited increased lipid accumulation, a hallmark of NAFLD, along with reduced LDL-C, HDL-C and elevated triglycerides. CONCLUSIONS: This comprehensive approach, that combines genome editing, transcriptomics, and phenotypic assays identified the DIO1 promoter region as a potential enhancer. Its activity could regulate multiple genes involved in the NAFLD phenotype or contribute to defining a polygenic risk score for enhanced risk assessment in NAFLD patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , LDL-Colesterol/genética , Estudo de Associação Genômica Ampla , Células Hep G2 , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Triglicerídeos/metabolismo , Iodeto Peroxidase/genética , HDL-Colesterol/genética , HDL-Colesterol/metabolismo
2.
Cancers (Basel) ; 14(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35954411

RESUMO

Glioblastoma multiforme (GBM) is a lethal brain tumor, characterized by enhanced proliferation and invasion, as well as increased vascularization and chemoresistance. The expression of the hyaluronan receptor CD44 has been shown to correlate with GBM progression and poor prognosis. Here, we sought to elucidate the molecular mechanisms by which CD44 promotes GBM progression by knocking out (KO) CD44, employing CRISPR/Cas9 gene editing in U251MG cells. CD44-depleted cells exhibited an impaired proliferation rate, as shown by the decreased cell numbers, decreased Ki67-positive cell nuclei, diminished phosphorylation of CREB, and increased levels of the cell cycle inhibitor p16 compared to control cells. Furthermore, the CD44 KO cells showed decreased stemness and increased senescence, which was manifested upon serum deprivation. In stem cell-like enriched spheres, RNA-sequencing analysis of U251MG cells revealed a CD44 dependence for gene signatures related to hypoxia, the glycolytic pathway, and G2 to M phase transition. Partially similar results were obtained when cells were treated with the γ-secretase inhibitor DAPT, which inhibits CD44 cleavage and therefore inhibits the release of the intracellular domain (ICD) of CD44, suggesting that certain transcriptional responses are dependent on CD44-ICD. Interestingly, the expression of molecules involved in hyaluronan synthesis, degradation, and interacting matrix proteins, as well as of platelet-derived growth factor (PDGF) isoforms and PDGF receptors, were also deregulated in CD44 KO cells. These results were confirmed by the knockdown of CD44 in another GBM cell line, U2990. Notably, downregulation of hyaluronan synthase 2 (HAS2) impaired the hypoxia-related genes and decreased the CD44 protein levels, suggesting a CD44/hyaluronan feedback circuit contributing to GBM progression.

3.
Cell Mol Life Sci ; 79(2): 85, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064336

RESUMO

Interaction of platelet-derived growth factor (PDGF) isoforms with their receptors results in activation and internalization of receptors, with a concomitant activation of downstream signalling pathways. Ubiquitination of PDGFRs serves as a mark to direct the internalization and sorting of the receptors. By overexpressing a panel of deubiquitinating enzymes (DUBs), we found that USP17 and USP4 efficiently deubiquitinate PDGF receptor ß (PDGFRß) and are able to remove both Lys63 and Lys48-linked polyubiquitin chains from the receptor. Deubiquitination of PDGFRß did not affect its stability, but regulated the timing of its trafficking, whereby USP17 prolonged the presence of the receptor at the cell surface, while USP4 affected the speed of trafficking towards early endosomes. Induction of each of the DUBs in BJhTERT fibroblasts and U2OS osteosarcoma cells led to prolonged and/or shifted activation of STAT3 in response to PDGF-BB stimulation, which in turn led to increased transcriptional activity of STAT3. Induction of USP17 promoted acute upregulation of the mRNA expression of STAT3-inducible genes STAT3, CSF1, junB and c-myc, while causing long-term changes in the expression of myc and CDKN1A. Deletion of USP17 was lethal to fibroblasts, while deletion of USP4 led to a decreased proliferative response to stimulation by PDGF-BB. Thus, USP17- and USP4-mediated changes in ubiquitination of PDFGRß lead to dysregulated signalling and transcription downstream of STAT3, resulting in defects in the control of cell proliferation.


Assuntos
Becaplermina/farmacologia , Endopeptidases/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteases Específicas de Ubiquitina/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Endopeptidases/química , Endopeptidases/genética , Humanos , Mutagênese , Transporte Proteico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
4.
Am J Hum Genet ; 108(4): 739-748, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711248

RESUMO

Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures. Three siblings were found homozygous for a NCDN missense variant, whereas another three unrelated individuals carried different de novo missense variants in NCDN. We assayed the missense variants for their capability to rescue impaired neurite formation in human neuroblastoma (SH-SY5Y) cells depleted of NCDN. Overexpression of wild-type NCDN rescued the neurite-phenotype in contrast to expression of NCDN containing the variants of affected individuals. Two missense variants, associated with severe neurodevelopmental features and epilepsy, were unable to restore mGluR5-induced ERK phosphorylation. Electrophysiological analysis of SH-SY5Y cells depleted of NCDN exhibited altered membrane potential and impaired action potentials at repolarization, suggesting NCDN to be required for normal biophysical properties. Using available transcriptome data from human fetal cortex, we show that NCDN is highly expressed in maturing excitatory neurons. In combination, our data provide evidence that bi-allelic and de novo variants in NCDN cause a clinically variable form of neurodevelopmental delay and epilepsy, highlighting a critical role for NCDN in human brain development.


Assuntos
Alelos , Epilepsia/genética , Deficiência Intelectual/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Sequência de Bases , Linhagem Celular , Pré-Escolar , Consanguinidade , Feminino , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Mutação de Sentido Incorreto , Neuritos , Paquistão
5.
BMC Endocr Disord ; 19(1): 115, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664995

RESUMO

BACKGROUND: The prevalence of obesity and its comorbidities, including type 2 diabetes mellitus (T2DM), is dramatically increasing throughout the world; however, the underlying aetiology is incompletely understood. Genome-wide association studies (GWAS) have identified hundreds of genec susceptibility loci for obesity and T2DM, although the causal genes and mechanisms are largely unknown. SPRY2 is a candidate gene identified in GWAS of body fat percentage and T2DM, and has recently been linked to insulin production in pancreatic ß-cells. In the present study, we aimed to further understand SPRY2 via functional characterisation in HepG2 cells, an in vitro model of human hepatocytes widely used to investigate T2DM and insulin resistance. METHODS: CRISPR-Cas9 genome editing was used to target SPRY2 in HepG2 cells, and the functional consequences of SPRY2 knockout (KO) and overexpression subsequently assessed using glucose uptake and lipid droplet assays, measurement of protein kinase phosphorylation and RNA sequencing. RESULTS: The major functional consequence of SPRY2 KO was a significant increase in glucose uptake, along with elevated lipid droplet accumulation. These changes were attenuated, but not reversed, in cells overexpressing SPRY2. Phosphorylation of protein kinases across key signalling pathways (including Akt and mitogen activated protein kinases) was not altered after SPRY2 KO. Transcriptome profiling in SPRY2 KO and mock (control) cells revealed a number of differentially expressed genes related to cholesterol biosynthesis, cell cycle regulation and cellular signalling pathways. Phospholipase A2 group IIA (PLA2G2A) mRNA level was subsequently validated as significantly upregulated following SPRY2 KO, highlighting this as a potential mediator downstream of SPRY2. CONCLUSION: These findings suggest a role for SPRY2 in glucose and lipid metabolism in hepatocytes and contribute to clarifying the function of this gene in the context of metabolic diseases.


Assuntos
Sistemas CRISPR-Cas , Glucose/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gotículas Lipídicas/metabolismo , Lipogênese , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Perfilação da Expressão Gênica , Células Hep G2 , Hepatócitos/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Fosforilação , Transdução de Sinais
6.
Hereditas ; 155: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28974923

RESUMO

BACKGROUND: micro RNAs (miRNAs) are important regulators of many biological pathways. A plethora of steps are required to form, from a precursor, the mature miRNA that eventually acts on its target RNA to repress its expression or to inhibit translation. Recently, Drosophila nibbler (nbr) has been shown to be an important player in the maturation process of miRNA and piRNA. Nbr is an exoribonuclease which helps to shape the 3' end of miRNAs by trimming the 3' overhang to a final length. RESULTS: In contrast to previous reports on the localization of Nbr, we report that 1) Nbr is expressed only during a short time of oogenesis and appears ubiquitously localized within oocytes, and that 2) Nbr was is not enriched in the nuage where it was shown to be involved in piwi-mediated mechanisms. To date, there is little information available on the function of nbr for cellular and developmental processes. Due to the fact that nbr mutants are viable with minor deleterious effects, we used the GAL4/UAS over-expression system to define novel functions of nbr. We disclose hitherto unknown functions of nbr 1) as a tumor suppressor and 2) as a suppressor of RNAi. Finally, we confirm that nbr is a suppressor of transposon activity. CONCLUSIONS: Our data suggest that nbr exerts much more widespread functions than previously reported from trimming 3' ends of miRNAs only.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Exorribonucleases/fisiologia , Oogênese , Interferência de RNA , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Exorribonucleases/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , MicroRNAs/genética , RNA Interferente Pequeno/genética
7.
J Immunol ; 191(12): 6110-6, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24227780

RESUMO

BANK1, an adaptor protein expressed in B cells, plays a little understood role in B cell signaling. Because BANK1 contains an N-terminal putative Toll/IL-1R receptor domain, we used mouse Bank1(-/-) splenic B cells to test whether BANK1 affects signaling induced by the TLR9 agonist CpG. Following CpG stimulation, BANK1 deficiency reduced p38 phosphorylation without affecting that of ERK or JNK and reduced IL-6 secretion. Bank1(-/-) B cells showed reduced phosphorylation of MNK1/2 and eIF4E, suggesting an effect on translation initiation, whereas Bank1(-/-) had no effect on IL-6 mRNA stability, thus suggesting that BANK1 has no effect on MK2 signaling. IL-6 secretion observed when CpG stimulation was combined with anti-CD40 was reduced in the absence of BANK1. Whereas in the presence of anti-CD40 stimulation CpG induced a stronger phosphorylation of AKT, mTOR, and 4E-BP1, Bank1(-/-) had no effect on phosphorylation of mTOR and 4E-BP1, and a weak effect on AKT, implying that BANK1 does not affect the release of eIF4E by phospho-4E-BP1. Taken together, these data establish a previously unrecognized role for BANK1 in CpG-induced responses by splenic B cells on p38 signaling and control of translation initiation of IL-6 via MNK1/2 and eIF4E.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Linfócitos B/metabolismo , Ilhas de CpG/imunologia , Fator de Iniciação 4E em Eucariotos/fisiologia , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autoimunidade , Linfócitos B/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Ativação Enzimática , Fatores de Iniciação em Eucariotos , Interleucina-6/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Organismos Livres de Patógenos Específicos , Baço/citologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
8.
Development ; 133(19): 3805-15, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16943280

RESUMO

Dystroglycan (Dg) is a widely expressed extracellular matrix (ECM) receptor required for muscle viability, synaptogenesis, basementmembrane formation and epithelial development. As an integral component of the Dystrophin-associated glycoprotein complex, Dg plays a central role in linking the ECM and the cytoskeleton. Disruption of this linkage in skeletal muscle leads to various types of muscular dystrophies. In epithelial cells, reduced expression of Dg is associated with increased invasiveness of cancer cells. We have previously shown that Dg is required for epithelial cell polarity in Drosophila, but the mechanisms of this polarizing activity and upstream/downstream components are largely unknown. Using the Drosophila follicle-cell epithelium (FCE) as a model system, we show that the ECM molecule Perlecan (Pcan) is required for maintenance of epithelial-cell polarity. Follicle cells that lack Pcan develop polarity defects similar to those of Dg mutant cells. Furthermore, Dg depends on Pcan but not on Laminin A for its localization in the basal-cell membrane, and the two proteins bind in vitro. Interestingly, the Dg form that interacts with Pcan in the FCE lacks the mucin-like domain, which is thought to be essential for Dg ligand binding activity. Finally, we describe two examples of how Dg promotes the differentiation of the basal membrane domain: (1) by recruiting/anchoring the cytoplasmic protein Dystrophin; and (2) by excluding the transmembrane protein Neurexin. We suggest that the interaction of Pcan and Dg at the basal side of the epithelium promotes basal membrane differentiation and is required for maintenance of cell polarity in the FCE.


Assuntos
Polaridade Celular , Drosophila melanogaster/citologia , Distroglicanas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Folículo Ovariano/citologia , Animais , Moléculas de Adesão Celular Neuronais/análise , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Polaridade Celular/genética , Contactinas , Proteínas de Drosophila/análise , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Distroglicanas/análise , Distroglicanas/genética , Epitélio/química , Epitélio/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Feminino , Proteoglicanas de Heparan Sulfato/análise , Proteoglicanas de Heparan Sulfato/genética , Mucinas/metabolismo , Folículo Ovariano/metabolismo , Estrutura Terciária de Proteína
9.
J Biol Chem ; 279(23): 24034-43, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15047711

RESUMO

Fat cadherins constitute a subclass of the large cadherin family characterized by the presence of 34 cadherin motifs. To date, three mammalian Fat cadherins have been described; however, only limited information is known about the function of these molecules. In this paper, we describe the second fat cadherin in Drosophila, fat-like (ftl). We show that ftl is the true orthologue of vertebrate fat-like genes, whereas the previously characterized tumor suppressor cadherin, fat, is more distantly related as compared with ftl. Ftl is a large molecule of 4705 amino acids. It is expressed apically in luminal tissues such as trachea, salivary glands, proventriculus, and hindgut. Silencing of ftl results in the collapse of tracheal epithelia giving rise to breaks, deletions, and sac-like structures. Other tubular organs such as proventriculus, salivary glands, and hindgut are also malformed or missing. These data suggest that Ftl is required for morphogenesis and maintenance of tubular structures of ectodermal origin and underline its similarity in function to a reported lethal mouse knock-out of fat1 where glomerular epithelial processes collapse. Based on our results, we propose a model where Ftl acts as a spacer to keep tubular epithelia apart rather than the previously described adhesive properties of the cadherin superfamily.


Assuntos
Caderinas/química , Caderinas/genética , Drosophila/embriologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anticorpos/química , Adesão Celular , Drosophila/genética , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Hibridização In Situ , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Transgenes
10.
Development ; 130(1): 173-84, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12441301

RESUMO

The transmembrane protein Dystroglycan is a central element of the dystrophin-associated glycoprotein complex, which is involved in the pathogenesis of many forms of muscular dystrophy. Dystroglycan is a receptor for multiple extracellular matrix (ECM) molecules such as Laminin, agrin and perlecan, and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Células Epiteliais/citologia , Glicoproteínas de Membrana/metabolismo , Oócitos/citologia , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Proteínas de Drosophila/genética , Distroglicanas , Células Epiteliais/fisiologia , Feminino , Laminina/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Oócitos/fisiologia , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Homologia de Sequência de Aminoácidos
11.
Nat Genet ; 32(4): 666-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12402038

RESUMO

Systemic lupus erythematosus (SLE, OMIM 152700) is a complex autoimmune disease that affects 0.05% of the Western population, predominantly women. A number of susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes and mutations is yet to be identified. We previously reported a susceptibility locus (SLEB2) for Nordic multi-case families. Within this locus, the programmed cell death 1 gene (PDCD1, also called PD-1) was considered the strongest candidate for association with the disease. Here, we analyzed 2,510 individuals, including members of five independent sets of families as well as unrelated individuals affected with SLE, for single-nucleotide polymorphisms (SNPs) that we identified in PDCD1. We show that one intronic SNP in PDCD1 is associated with development of SLE in Europeans (found in 12% of affected individuals versus 5% of controls; P = 0.00001, r.r. (relative risk) = 2.6) and Mexicans (found in 7% of affected individuals versus 2% of controls; P = 0.0009, r.r. = 3.5). The associated allele of this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1, also called AML1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans.


Assuntos
Antígenos de Superfície/genética , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Polimorfismo Genético , Regiões 3' não Traduzidas/genética , Alelos , Substituição de Aminoácidos , Antígenos CD , Proteínas Reguladoras de Apoptose , Sequência de Bases , Extratos Celulares , Núcleo Celular/química , Feminino , Frequência do Gene , Haplótipos , Humanos , Células Jurkat , Leucócitos Mononucleares/química , Leucócitos Mononucleares/citologia , Desequilíbrio de Ligação , Escore Lod , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Receptor de Morte Celular Programada 1 , Regiões Promotoras Genéticas , Sequências de Repetição em Tandem , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA