Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430433

RESUMO

Nitric oxide (NO) is a regulator of growth, development, and stress responses in living organisms. Plant nitrate reductases (NR) catalyze the reduction of nitrate to nitrite or, alternatively, to NO. In plants, NO action and its targets remain incompletely understood, and the way NO regulates its own homeostasis remains to be elucidated. A significant transcriptome overlapping between NO-deficient mutant and NO-treated wild type plants suggests that NO could negatively regulate its biosynthesis. A significant increase in NO content was detected in transgenic plants overexpressing NR1 and NR2 proteins. In turn, NR protein and activity as well as NO content, decreased in wild-type plants exposed to a pulse of NO gas. Tag-aided immunopurification procedures followed by tandem mass spectrometry allowed identifying NO-triggered post-translational modifications (PTMs) and ubiquitylation sites in NRs. Nitration of tyrosine residues and S-nitrosation of cysteine residues affected key amino acids involved in binding the essential FAD and molybdenum cofactors. NO-related PTMs were accompanied by ubiquitylation of lysine residues flanking the nitration and S-nitrosation sites. NO-induced PTMs of NRs potentially inhibit their activities and promote their proteasome-mediated degradation. This auto-regulatory feedback loop may control nitrate assimilation to ammonium and nitrite-derived production of NO under complex environmental conditions.


Assuntos
Homeostase/genética , Nitrato Redutases/genética , Óxido Nítrico/análogos & derivados , Processamento de Proteína Pós-Traducional/genética , Compostos de Amônio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Taxa de Depuração Metabólica/genética , Nitratos/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/genética , Nitritos/metabolismo
2.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019636

RESUMO

Plant growth is the result of the coordinated photosynthesis-mediated assimilation of oxidized forms of C, N and S. Nitrate is the predominant N source in soils and its reductive assimilation requires the successive activities of soluble cytosolic NADH-nitrate reductases (NR) and plastid stroma ferredoxin-nitrite reductases (NiR) allowing the conversion of nitrate to nitrite and then to ammonium. However, nitrite, instead of being reduced to ammonium in plastids, can be reduced to nitric oxide (NO) in mitochondria, through a process that is relevant under hypoxic conditions, or in the cytoplasm, through a side-reaction catalyzed by NRs. We use a loss-of-function approach, based on CRISPR/Cas9-mediated genetic edition, and gain-of-function, using transgenic overexpressing HA-tagged Arabidopsis NiR1 to characterize the role of this enzyme in controlling plant growth, and to propose that the NO-related post-translational modifications, by S-nitrosylation of key C residues, might inactivate NiR1 under stress conditions. NiR1 seems to be a key target in regulating nitrogen assimilation and NO homeostasis, being relevant to the control of both plant growth and performance under stress conditions. Because most higher plants including crops have a single NiR, the modulation of its function might represent a relevant target for agrobiotechnological purposes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nitrito Redutases/genética , Nitritos/metabolismo , Folhas de Planta/genética , Processamento de Proteína Pós-Traducional , Compostos de Amônio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Edição de Genes , Mitocôndrias/metabolismo , Modelos Moleculares , Mutação , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Compostos Nitrosos/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Conformação Proteica , Spinacia oleracea/enzimologia , Spinacia oleracea/genética
3.
Sci Rep ; 8(1): 9268, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915353

RESUMO

Plant tolerance to freezing temperatures is governed by endogenous constitutive components and environmental inducing factors. Nitric oxide (NO) is one of the endogenous components that participate in freezing tolerance regulation. A combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1-2 mutant plants suggests that NO acts attenuating the production and accumulation of osmoprotective and regulatory metabolites, such as sugars and polyamines, stress-related hormones, such as ABA and jasmonates, and antioxidants, such as anthocyanins and flavonoids. Accordingly, NO-deficient plants are constitutively more freezing tolerant than wild type plants.


Assuntos
Adaptação Fisiológica , Antocianinas/metabolismo , Arabidopsis/fisiologia , Congelamento , Óxido Nítrico/metabolismo , Osmose , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico , Ácido Abscísico/biossíntese , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Glicólise , Metaboloma , Modelos Biológicos , Mutação/genética , Oxilipinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
4.
Sci Signal ; 8(392): ra89, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26329583

RESUMO

Abscisic acid (ABA) is a phytohormone that inhibits growth and enhances adaptation to stress in plants. ABA perception and signaling rely on its binding to receptors of the pyrabactin resistance1/PYR1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) family, the subsequent inhibition of clade A type 2C protein phosphatases (PP2Cs), and the phosphorylation of ion channels and transcription factors by protein kinases of the SnRK2 family. Nitric oxide (NO) may inhibit ABA signaling because NO-deficient plants are hypersensitive to ABA. Regulation by NO often involves posttranslational modification of proteins. Mass spectrometry analysis of ABA receptors expressed in plants and recombinant receptors modified in vitro revealed that the receptors were nitrated at tyrosine residues and S-nitrosylated at cysteine residues. In an in vitro ABA-induced, PP2C inhibition assay, tyrosine nitration reduced receptor activity, whereas S-nitrosylated receptors were fully capable of ABA-induced inhibition of the phosphatase. PYR/PYL/RCAR proteins with nitrated tyrosine, which is an irreversible covalent modification, were polyubiquitylated and underwent proteasome-mediated degradation. We propose that tyrosine nitration, which requires NO and superoxide anions, is a rapid mechanism by which NO limits ABA signaling under conditions in which NO and reactive oxygen species are both produced.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Óxido Nítrico/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C , Tirosina/análogos & derivados , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA