Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 95(6): 1510-1518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225450

RESUMO

BACKGROUND: Early-onset fetal growth restriction (FGR) is associated with adverse outcomes. We hypothesised that maternal melatonin administration will improve fetal brain structure in FGR. METHODS: Surgery was performed on twin-bearing ewes at 88 days (0.6 gestation), and FGR induced in one twin via single umbilical artery ligation. Melatonin was administered intravenously (6 mg/day) to a group of ewes commencing on day of surgery until 127 days (0.85 gestation), when the ewe/fetuses were euthanized, and fetal brains collected. RESULTS: Study groups were control (n = 5), FGR (n = 5), control+melatonin (control+MLT; n = 6) and FGR+melatonin (FGR + MLT; n = 6). Melatonin administration did not significantly alter fetal body or brain weights. Myelin (CNPase+) fibre density was reduced in FGR vs. control animals in most brain regions examined (p < 0.05) and melatonin treatment restored CNPase fibre density. Similar but less pronounced effect was seen with mature myelin (MBP+) staining. Significant differences in activated microglia (Iba-1) activity were seen between lamb groups (MLT mitigated FGR effect) in periventricular white matter, subventricular zone and external capsule (p < 0.05). Similar effects were seen in astrogliosis (GFAP) in intragyral white matter and cortex. CONCLUSIONS: Maternal melatonin administration in early onset FGR led to improved myelination of white matter brain regions, possibly mediated by decreased inflammation. IMPACT: Maternal melatonin administration might lead to neuroprotection in the growth-restricted fetus, possibly via dampening neuroinflammation and enhancing myelination. This preclinical study adds to the body of work on this topic, and informs clinical translation. Neuroprotection likely to improve long-term outcomes of this vulnerable infant group.


Assuntos
Encéfalo , Retardo do Crescimento Fetal , Melatonina , Fármacos Neuroprotetores , Insuficiência Placentária , Melatonina/administração & dosagem , Melatonina/farmacologia , Animais , Retardo do Crescimento Fetal/prevenção & controle , Retardo do Crescimento Fetal/tratamento farmacológico , Feminino , Gravidez , Fármacos Neuroprotetores/administração & dosagem , Ovinos , Insuficiência Placentária/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo
2.
Stem Cell Res Ther ; 14(1): 29, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788590

RESUMO

BACKGROUND: Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS: Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS: Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS: ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.


Assuntos
Lesões Encefálicas , Encéfalo , Animais , Ovinos , Feminino , Humanos , Animais Recém-Nascidos , Feto , Lesões Encefálicas/metabolismo , Retardo do Crescimento Fetal/metabolismo , Sangue Fetal/metabolismo , Peso Corporal
3.
Front Cell Neurosci ; 14: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425758

RESUMO

Fetal growth restriction (FGR) is a common complication of pregnancy often associated with neurological impairments. Currently, there is no treatment for FGR, hence it is likely these babies will be delivered prematurely, thus being exposed to antenatal glucocorticoids. While there is no doubt that antenatal glucocorticoids reduce neonatal mortality and morbidities, their effects on the fetal brain, particularly in FGR babies, are less well recognized. We investigated the effects of both short- and long-term exposure to antenatal betamethasone treatment in both FGR and appropriately grown fetal sheep brains. Surgery was performed on pregnant Border-Leicester Merino crossbred ewes at 105-110 days gestation (term ~150 days) to induce FGR by single umbilical artery ligation (SUAL) or sham surgery. Ewes were then treated with a clinical dose of betamethasone (11.4 mg intramuscularly) or saline at 113 and 114 days gestation. Animals were euthanized at 115 days (48 h following the initial betamethasone administration) or 125 days (10 days following the initial dose of betamethasone) and fetal brains collected for analysis. FGR fetuses were significantly smaller than controls (115 days: 1.68 ± 0.11 kg vs. 1.99 ± 0.11 kg, 125 days: 2.70 ± 0.15 kg vs. 3.31 ± 0.20 kg, P < 0.001) and betamethasone treatment reduced body weight in both control (115 days: 1.64 ± 0.10 kg, 125 days: 2.53 ± 0.10 kg) and FGR fetuses (115 days: 1.41 ± 0.10 kg, 125 days: 2.16 ± 0.17 kg, P < 0.001). Brain: body weight ratios were significantly increased with FGR (P < 0.001) and betamethasone treatment (P = 0.002). Within the fetal brain, FGR reduced CNPase-positive myelin staining in the subcortical white matter (SCWM; P = 0.01) and corpus callosum (CC; P = 0.01), increased GFAP staining in the SCWM (P = 0.02) and reduced the number of Olig2 cells in the periventricular white matter (PVWM; P = 0.04). Betamethasone treatment significantly increased CNPase staining in the external capsule (EC; P = 0.02), reduced GFAP staining in the CC (P = 0.03) and increased Olig2 staining in the SCWM (P = 0.04). Here we show that FGR has progressive adverse effects on the fetal brain, particularly within the white matter. Betamethasone exacerbated growth restriction in the FGR offspring, but betamethasone did not worsen white matter brain injury.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32194502

RESUMO

Fetal growth restriction (FGR) and prematurity are often co-morbidities, and both are risk factors for lung disease. Despite advances in early delivery combined with supportive ventilation, rates of ventilation-induced lung injury (VILI) remain high. There are currently no protective treatments or interventions available that target lung morbidities associated with FGR preterm infants. Stem cell therapy, such as umbilical cord blood (UCB) cell administration, demonstrates an ability to attenuate inflammation and injury associated with VILI in preterm appropriately grown animals. However, no studies have looked at the effects of stem cell therapy in growth restricted newborns. We aimed to determine if UCB treatment could attenuate acute inflammation in the first 24 h of ventilation, comparing effects in lambs born preterm following FGR with those born preterm but appropriately grown (AG). Placental insufficiency (FGR) was induced by single umbilical artery ligation in twin-bearing ewes at 88 days gestation, with twins used as control (appropriately grown, AG). Lambs were delivered preterm at ~126 days gestation (term is 150 days) and randomized to either immediate euthanasia (unventilated controls, AGUVC and FGRUVC) or commenced on 24 h of gentle supportive ventilation (AGV and FGRV) with additional cohorts receiving UCB treatment at 1 h (AGCELLS, FGRCELLS). Lungs were collected at post-mortem for histological and biochemical examination. Ventilation caused lung injury in AG lambs, as indicated by decreased septal crests and elastin density, as well as increased inflammation. Lung injury in AG lambs was attenuated with UCB therapy. Ventilated FGR lambs also sustained lung injury, albeit with different indices compared to AG lambs; in FGR, ventilation reduced septal crest density, reduced alpha smooth muscle actin density and reduced cell proliferation. UCB treatment in ventilated FGR lambs further decreased septal crest density and increased collagen deposition, however, it increased angiogenesis as evidenced by increased vascular endothelial growth factor (VEGF) expression and vessel density. This is the first time that a cell therapy has been investigated in the lungs of growth restricted animals. We show that the uterine environment can alter the response to both secondary stress (ventilation) and therapy (UCB). This study highlights the need for further research on the potential impact of novel therapies on a growth restricted offspring.


Assuntos
Sangue Fetal/citologia , Retardo do Crescimento Fetal/fisiopatologia , Transplante de Células-Tronco/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Gravidez , Ovinos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
5.
Stem Cell Res Ther ; 11(1): 17, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915068

RESUMO

BACKGROUND: Neonatal ventilation exacerbates brain injury in lambs with fetal growth restriction (FGR), characterized by neuroinflammation and reduced blood-brain barrier integrity, which is normally maintained by the neurovascular unit. We examined whether umbilical cord blood stem cell (UCBC) treatment stabilized the neurovascular unit and reduced brain injury in preterm ventilated FGR lambs. METHODS: Surgery was performed in twin-bearing pregnant ewes at 88 days' gestation to induce FGR in one fetus. At 127 days, FGR and appropriate for gestational age (AGA) lambs were delivered, carotid artery flow probes and umbilical lines inserted, lambs intubated and commenced on gentle ventilation. Allogeneic ovine UCBCs (25 × 106 cells/kg) were administered intravenously to lambs at 1 h of life. Lambs were ventilated for 24 h and then euthanized. RESULTS: FGR (n = 6) and FGR+UCBC (n = 6) lambs were growth restricted compared to AGA (n = 6) and AGA+UCBC (n = 6) lambs (combined weight, FGR 2.3 ± 0.4 vs. AGA 3.0 ± 0.3 kg; p = 0.0002). UCBC therapy did not alter mean arterial blood pressure or carotid blood flow but decreased cerebrovascular resistance in FGR+UCBC lambs. Circulating TNF-α cytokine levels were lower in FGR+UCBC vs. FGR lambs (p < 0.05). Brain histopathology showed decreased neuroinflammation and oxidative stress, increased endothelial cell proliferation, pericyte stability, and greater integrity of the neurovascular unit in FGR+UCBC vs. FGR lambs. CONCLUSIONS: Umbilical cord blood stem cell therapy mitigates perinatal brain injury due to FGR and ventilation, and the neuroprotective benefits may be mediated by stabilization of the neurovascular unit.


Assuntos
Sangue Fetal/metabolismo , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Lesões Encefálicas/patologia , Assistência Perinatal , Ovinos
6.
Neuroimage Clin ; 24: 101991, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31473545

RESUMO

BACKGROUND: Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased risk of adverse neurodevelopment and neuromorbidity. Current imaging techniques, including conventional magnetic resonance imaging (MRI), are not sensitive enough to detect subtle structural abnormalities in the FGR brain. We examined whether advanced MRI analysis techniques have the capacity to detect brain injury (particularly white matter injury) caused by chronic hypoxia-induced fetal growth restriction in newborn preterm lambs. METHODS: Surgery was undertaken in twin bearing pregnant ewes at 88-90 days gestation (term = 150 days) to induce FGR in one fetus. At 127 days gestation (~32 weeks human brain development), FGR and control (appropriate for gestational age, AGA) lambs were delivered by caesarean section, intubated and ventilated. Conventional and advanced brain imaging was conducted within the first two hours of life using a 3T MRI scanner. T1-weighted (T1w) and T2-weighted (T2w) structural imaging, magnetic resonance spectroscopy (MRS), and diffusion MRI (dMRI) data were acquired. Diffusion tensor imaging (DTI) modelling and analysis of dMRI data included the following regions of interest (ROIs): subcortical white matter, periventricular white matter, cerebellum, hippocampus, corpus callosum and thalamus. Fixel-based analysis of 3-tissue constrained spherical deconvolution (CSD) of the dMRI data was performed and compared between FGR and AGA lambs. Lambs were euthanised immediately after the scans and brain histology performed in the regions of interest to correlate with imaging. RESULTS: FGR and AGA lamb (body weight, mean (SD): 2.2(0.5) vs. 3.3(0.3) kg, p = .002) MRI brain scans were analysed. There were no statistically significant differences observed between the groups in conventional T1w, T2w or MRS brain data. Mean, axial and radial diffusivity, and fractional anisotropy indices obtained from DTI modelling also did not show any statistically significant differences between groups in the ROIs. Fixel-based analysis of 3-tissue CSD, however, did reveal a decrease in fibre cross-section (FC, p < .05) but not in fibre density (FD) or combined fibre density and cross-section (FDC) in FGR vs. AGA lamb brains. The specific tracts that showed a decrease in FC were in the regions of the periventricular white matter, hippocampus and cerebellar white matter, and were supported by histological evidence of white matter hypomyelination and disorganisation in corresponding FGR lamb brain regions. CONCLUSIONS: The neuropathology associated with FGR in neonatal preterm lambs is subtle and imaging detection may require advanced MRI and tract-based analysis techniques. Fixel-based analysis of 3-tissue CSD demonstrates that the preterm neonatal FGR brain shows evidence of macrostructural (cross-sectional) deficits in white matter subsequent to altered antenatal development. These findings can inform analysis of similar brain pathology in neonatal infants.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Retardo do Crescimento Fetal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Animais , Animais Recém-Nascidos , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Ovinos
7.
Int J Mol Sci ; 20(10)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108944

RESUMO

Cerebral palsy (CP) is a permanent motor disorder that results from brain injury and neuroinflammation during the perinatal period. Mesenchymal stromal cells (MSCs) have been explored as a therapy in multiple adult neuroinflammatory conditions. Our study examined the therapeutic benefits of intranasal delivery of human umbilical cord tissue (UC) derived-MSCs in a rat model of neonatal hypoxic-ischemic (HI) brain injury. To do this, HI was performed on postnatal day 10 Sprague-Dawley rat pups via permanent ligation of the left carotid artery, followed by a hypoxic challenge of 8% oxygen for 90 min. A total of 200,000 UC-MSCs (10 million/kg) were administered intranasally 24 h post-HI. Motor control was assessed after seven days, followed by post-mortem. Analysis included brain immunohistochemistry, gene analysis and serum cytokine measurement. Neonatal HI resulted in brain injury with significant loss of neurons, particularly in the hippocampus. Intranasal administration of UC-MSCs significantly reduced the loss of brain tissue and increased the number of hippocampal neurons. HI significantly upregulated brain inflammation and expression of pro-inflammatory cytokines, while intranasal UC-MSCs significantly reduced markers of neuroinflammation. This study demonstrated that a clinically relevant dose (10 million/kg) of UC-MSCs was neuroprotective following HI by restoring neuronal cell numbers and reducing brain inflammation. Therefore, intranasal delivery of UC-MSCs may be an effective therapy for neonatal brain injury.


Assuntos
Paralisia Cerebral/terapia , Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Administração Intranasal , Animais , Animais Recém-Nascidos , Paralisia Cerebral/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Hipóxia-Isquemia Encefálica/imunologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
Artigo em Inglês | MEDLINE | ID: mdl-30792696

RESUMO

Being born small lays the foundation for short-term and long-term implications for life. Intrauterine or fetal growth restriction describes the pregnancy complication of pathological reduced fetal growth, leading to significant perinatal mortality and morbidity, and subsequent long-term deficits. Placental insufficiency is the principal cause of FGR, which in turn underlies a chronic undersupply of oxygen and nutrients to the fetus. The neonatal morbidities associated with FGR depend on the timing of onset of placental dysfunction and growth restriction, its severity, and the gestation at birth of the infant. In this review, we explore the pathophysiological mechanisms involved in the development of major neonatal morbidities in FGR, and their impact on the health of the infant. Fetal cardiovascular adaptation and altered organ development during gestation are principal contributors to postnatal consequences of FGR. Clinical presentation, diagnostic tools and management strategies of neonatal morbidities are presented. We also present information on the current status of targeted therapies. A better understanding of neonatal morbidities associated with FGR will enable early neonatal detection, monitoring and management of potential adverse outcomes in the newborn period and beyond.

9.
Exp Neurol ; 308: 120-131, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30012511

RESUMO

INTRODUCTION: Preterm infants are at high risk for white matter injury and subsequent neurodevelopmental impairments. Mesenchymal stem/stromal cells (MSC) have anti-inflammatory/immunomodulatory actions and are of interest for neural repair in adults and newborns. This study examined the neuroprotective effects of allogeneic MSC, derived from preterm umbilical cord blood (UCB), in a preterm sheep model of white matter injury. METHODS: Quad-lineage differentiation, clonogenicity and self-renewal ability of UCB-derived MSC were confirmed. Chronically instrumented fetal sheep (0.7 gestation) received either 25 min hypoxia-ischemia (HI) to induce preterm brain injury, or sham-HI. Ten million MSC, or saline, were administered iv to fetuses at 12 h after HI. Fetal brains were collected 10d after HI for histopathology and immunocytochemistry. RESULTS: HI induced white matter injury, as indicated by a reduction in CNPase-positive myelin fiber density. HI also induced microglial activation (Iba-1) in the periventricular white matter and internal capsule (P < .05 vs control). MSC administration following HI preserved myelination (P < .05), modified microglial activation, and promoted macrophage migration (CD163) and cell proliferation (Ki-67) within cerebral white matter (P < .05). Cerebral CXCL10 concentration was increased following MSC administration (P < .05), which was likely associated with macrophage migration and cell proliferation within the preterm brain. Additionally, MSC administration reduced systemic pro-inflammatory cytokine TNFα at 3d post-HI (P < .05). CONCLUSIONS: UCB-derived MSC therapy preserved white matter brain structure following preterm HI, mediated by a suppression of microglial activation, promotion of macrophage migration and acceleration of self-repair within the preterm brain. UCB-derived MSC are neuroprotective, acting via peripheral and cerebral anti-inflammatory and immunomodulatory mechanisms.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Hipóxia-Isquemia Encefálica/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Animais Recém-Nascidos , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Feminino , Gravidez , Nascimento Prematuro , Ovinos
10.
J Neuroinflammation ; 15(1): 47, 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29454374

RESUMO

BACKGROUND: It is well understood that hypoxic-ischemic (HI) brain injury during the highly vulnerable perinatal period can lead to cerebral palsy, the most prevalent cause of chronic disability in children. Recently, human clinical trials have reported safety and some efficacy following treatment of cerebral palsy using umbilical cord blood (UCB) cells. UCB is made up of many different cell types, including endothelial progenitor cells (EPCs), T regulatory cells (Tregs), and monocyte-derived suppressor cells (MDSCs). How each cell type contributes individually towards reducing neuroinflammation and/or repairing brain injury is not known. In this study, we examined whether human (h) UCB, or specific UCB cell types, could reduce peripheral and cerebral inflammation, and promote brain repair, when given early after perinatal HI brain injury. METHODS: HI brain injury was induced in postnatal day (PND) 7 rat pups and cells were administered intraperitoneally on PND 8. Behavioral testing was performed 7 days post injury, and then, brains and spleens were collected for analysis. RESULTS: We found in vitro that all UCB cell types, except for EPCs, were immunomodulatory. Perinatal HI brain injury induced significant infiltration of CD4+ T cells into the injured cerebral hemisphere, and this was significantly reduced by all hUCB cell types tested. Compared to HI, UCB, Tregs, and EPCs were able to reduce motor deficits, reduce CD4+ T cell infiltration into the brain, and reduce microglial activation. In addition to the beneficial effects of UCB, EPCs also significantly reduced cortical cell death, returned CD4+ T cell infiltration to sham levels, and reduced the peripheral Th1-mediated pro-inflammatory shift. CONCLUSION: This study highlights that cells found in UCB is able to mediate neuroinflammation and is an effective neuroprotective therapy. Our study also shows that particular cells found in UCB, namely EPCs, may have an added advantage over using UCB alone. This work has the potential to progress towards tailored UCB therapies for the treatment of perinatal brain injury.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Células Progenitoras Endoteliais/transplante , Sangue Fetal/citologia , Hipóxia-Isquemia Encefálica/terapia , Monócitos/transplante , Linfócitos T Reguladores/transplante , Animais , Animais Recém-Nascidos , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/metabolismo , Sangue Fetal/transplante , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Monócitos/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Linfócitos T Reguladores/metabolismo
11.
Dev Neurosci ; 39(1-4): 323-337, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467985

RESUMO

Chronic moderate hypoxia, such as occurs in fetal growth restriction (FGR) during gestation, compromises the blood-brain barrier (BBB) and results in structural abnormalities of the cerebral vasculature. We have previously determined the neuroprotective and antioxidant effects of maternal administration of melatonin (MLT) on growth-restricted newborn lambs. The potential of maternal MLT therapy for the treatment of cerebrovascular dysfunction-associated developmental hypoxia has also been demonstrated in newborn lambs. We assessed whether MLT had an effect on the previously reported structural and cerebral vascular abnormalities in chronically hypoxic FGR lambs. Single umbilical-artery ligation surgery was performed in fetuses at approximately 105 days of gestation (term: 147 days) to induce placental insufficiency and FGR, and treatment with either saline or an MLT infusion (0.1 mg/kg) was started 4 h after surgery. Ewes delivered naturally at term and lambs were euthanased 24 h later. We found a significant reduction in the number of laminin-positive blood vessels within the subcortical and periventricular white matter (SCWM and PVWM) and the subventricular zone (SVZ) in FGR (p < 0.0005) and FGR + MLT brains (p < 0.0005 vs. controls), with no difference found between FGR and FGR + MLT animals. This was associated with a significant decrease in VEGF immunoreactivity in FGR and FGR + MLT brains versus controls (p < 0.0005; SCWM and PVWM) and in the SVZ in FGR brains versus controls (p < 0.005) and also with significantly lower levels of proliferating blood vessels versus controls (p < 0.0005). Glucose transporter-1 immunoreactivity (vascular endothelium) was decreased in FGR versus control lambs (p < 0.0005) in SCWM, PVWM, and the SVZ; it was significantly increased in FGR + MLT lambs compared with FGR lambs in SCWM and PVWM (p < 0.005) and even more markedly in the SVZ (p < 0.0005). FGR brains showed a 72% reduction in pericyte coverage versus control lambs and 68% versus FGR + MLT in PVWM. In SCWM, we found a 77 and 73% reduction compared with control and FGR + MLT lambs, respectively, while in the SVZ, we observed a 68% reduction versus controls and a 70% reduction in FGR versus FGR + MLT lambs. Astrocyte end-feet coverage in the SCWM showed a significant 24% reduction in FGR versus control levels, a 42% decrease within the PVWM, and a 35% decrease within the SVZ versus controls. MLT normalized astrocyte attachment to blood vessels, with no difference seen between controls and FGR + MLT animals in any of the brain regions examined. We also observed a decrease in albumin extravasation and microhemorrhage in controls and FGR + MLT brains versus FGR lambs. Our results demonstrate that umbilicoplacental insufficiency is associated with FGR-produced vascular changes in the white matter and SVZ of FGR newborn brains and that maternal MLT prevented disruption of the BBB by protecting perivascular cells essential for the maintenance of vascular homeostasis and stability.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Melatonina/farmacologia , Animais , Antioxidantes/farmacologia , Feminino , Retardo do Crescimento Fetal/patologia , Hipóxia-Isquemia Encefálica/etiologia , Neovascularização Fisiológica/efeitos dos fármacos , Gravidez , Ovinos , Carneiro Doméstico
12.
Dev Neurosci ; 39(1-4): 141-155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273661

RESUMO

Fetal growth restriction (FGR) is a common complication of pregnancy, principally caused by suboptimal placental function, and is associated with high rates of perinatal mortality and morbidity. Clinical studies suggest that the time of onset of placental insufficiency is an important contributor towards the neurodevelopmental impairments that are evident in children who had FGR. It is however currently unknown how early-onset and late-onset FGR differentially affect brain development. The aim of this study was to examine neuropathology in early-onset and late-onset FGR fetal sheep and to determine whether they differentially alter brain development. We induced placental insufficiency and FGR via single umbilical artery ligation at either 88 days (early-onset) or 105 days (late-onset) of fetal sheep gestation (term is approx. 147 days), reflecting a period of rapid white matter brain development. Fetal blood samples were collected for the first 10 days after surgery, and all fetuses were sacrificed at 125 days' gestation for brain collection and subsequent histopathology. Our results show that early-onset FGR fetuses became progressively hypoxic over the first 10 days after onset of placental insufficiency, whereas late-onset FGR fetuses were significantly hypoxic compared to controls from day 1 after onset of placental insufficiency (SaO2 46.7 ± 7.4 vs. 65.7 ± 3.9%, respectively, p = 0.03). Compared to control brains, early-onset FGR brains showed widespread white matter injury, with a reduction in both CNPase-positive and MBP-positive density of staining in the periventricular white matter (PVWM), subcortical white matter, intragyral white matter (IGWM), subventricular zone (SVZ), and external capsule (p < 0.05 for all). Total oligodendrocyte lineage cell counts (Olig-2-positive) did not differ across groups, but mature oligodendrocytes (MBP-positive) were reduced, and neuroinflammation was evident in early-onset FGR brains with reactive astrogliosis (GFAP-positive) in the IGWM and cortex (p < 0.05), together with an increased number of Iba-1-positive activated microglia in the PVWM, SVZ, and cortex (p < 0.05). Late-onset FGR was associated with a widespread reduction of CNPase-positive myelin expression (p < 0.05) and a reduced number of mature oligodendrocytes in all white matter regions examined (p < 0.05). NeuN-positive neuronal cell counts in the cortex were not different across groups; however, the morphology of neuronal cells was different in response to placental insufficiency, most notable in the early-onset FGR fetuses, but it was late-onset FGR that induced caspase-3-positive apoptosis within the cortex. This study demonstrates that early-onset FGR is associated with more widespread white matter injury and neuroinflammation; however, both early- and late-onset FGR are associated with complex patterns of white and grey matter injury. These results indicate that it is the timing of the onset of fetal compromise relative to brain development that principally mediates altered brain development associated with FGR.


Assuntos
Encéfalo/patologia , Retardo do Crescimento Fetal/patologia , Animais , Feminino , Idade Gestacional , Insuficiência Placentária , Gravidez , Ovinos , Fatores de Tempo
13.
Exp Neurol ; 283(Pt A): 179-87, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27317990

RESUMO

Infants born very preterm are at high risk for neurological deficits including cerebral palsy. In this study we assessed the neuroprotective effects of umbilical cord blood cells (UCBCs) and optimal administration timing in a fetal sheep model of preterm brain injury. 50 million allogeneic UCBCs were intravenously administered to fetal sheep (0.7 gestation) at 12h or 5d after acute hypoxia-ischemia (HI) induced by umbilical cord occlusion. The fetal brains were collected at 10d after HI. HI (n=7) was associated with reduced number of oligodendrocytes (Olig2+) and myelin density (CNPase+), and increased density of activated microglia (Iba-1+) in cerebral white matter compared to control fetuses (P<0.05). UCBCs administered at 12h, but not 5d after HI, significantly protected white matter structures and suppressed cerebral inflammation. Activated microglial density showed a correlation with decreasing oligodendrocyte number (P<0.001). HI caused cell death (TUNEL+) in the internal capsule and cell proliferation (Ki-67+) in the subventricular zone compared to control (P<0.05), while UCBCs at 12h or 5d ameliorated these effects. Additionally, UCBCs at 12h induced a significant systemic increase in interleukin-10 at 10d, and reduced oxidative stress (malondialdehyde) following HI (P<0.05). UCBC administration at 12h after HI reduces preterm white matter injury, via anti-inflammatory and antioxidant actions.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/prevenção & controle , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Bradicardia/etiologia , Lesões Encefálicas/etiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Idade Gestacional , Hipotensão/etiologia , Hipóxia-Isquemia Encefálica/complicações , Antígeno Ki-67/metabolismo , Masculino , Malondialdeído/sangue , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/patologia , Gravidez , Ovinos , Fatores de Tempo
14.
J Steroid Biochem Mol Biol ; 160: 204-13, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26485665

RESUMO

Synthesis of dehydroepiandrosterone (DHEA) by the fetal adrenal gland is important for placental oestrogen production, and may also be important for modulating the effects of glucocorticoids on the developing brain. We have preciously shown that the enzymes and accessory proteins needed for DHEA synthesis-cytochrome P450 enzyme 17α-hydroxylase/17,20 lyase (P450c17), cytochrome-b5 (Cytb5), 3ß-hydroxysteroid dehydrogenase (3ßHSD)-are expressed in the adrenal gland from 30 days gestation, and DHEA, cortisol and aldosterone are present in fetal plasma from this time. Explant culture of fetal adrenal tissue showed that the spiny mouse adrenal gland, can synthesize and secrete DHEA from at least 0.75 of gestation, and suggest that DHEA may have an important role(s) in placental biosynthesis of oestrogens and in modulating the actions of glucocorticoids in the developing brain in this species. Post-natally, increased immuno-expression of P450c17 and Cytb5 expression in the zona reticularis of the adrenal gland and a significant increase in the synthesis and secretion of DHEA in plasma from 8 to 20 days of age in the spiny mouse, are representative of a period of high adrenal androgen production consistent with the human phenomenon of adrenarche. The studies summarised in this review also show that DHEA is produced de novo in the developing brain of the spiny mouse. These results showed that the spiny mouse brain can indeed produce DHEA from pregnenolone in a time-dependant manner, and coupled with the identification of P450c17 and Cytb5 protein in several regions of the brain, support the idea that DHEA is an endogenous neuro-active steroid in this species. Together, the studies outlined in this review indicate that the androgen DHEA is an important hormone of adrenal and Central Nervous System (CNS) origin in the fetal and postnatal spiny mouse. Disturbance of the development of these fetal tissues, and/or of the relationship between the fetal adrenal gland and placenta during pregnancy, may have significant consequences for fetal development, placental function, and maturation of the brain. It is proposed that such disturbances of normal adrenal function could account for some of the neuropathologies that arise in juvenile and adult offspring following illness and stress experienced by the mother during pregnancy.


Assuntos
Encéfalo/embriologia , Desidroepiandrosterona/metabolismo , Placenta/metabolismo , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/crescimento & desenvolvimento , Glândulas Suprarrenais/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Desenvolvimento Fetal , Humanos , Camundongos , Gravidez
15.
Int J Dev Neurosci ; 45: 55-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25639519

RESUMO

Chronic moderate hypoxia induces angiogenic adaptation in the brain, reflecting a modulatory role for oxygen in determining cerebrovascular development. Chronic intrauterine fetal hypoxia, such as occurs in intrauterine growth restriction (IUGR) is likely to lead to a reduction in oxygen delivery to the brain and long-term neurological abnormalities. Thus we investigated whether vascular remodeling and vascular abnormalities were evident in the brain of IUGR newborn lambs that were chronically hypoxic in utero. Single uterine artery ligation (SUAL) surgery was performed in fetuses at ∼ 105 days gestation (term ∼ 145 days) to induce placental insufficiency and IUGR. Ewes delivered naturally at term and lambs were euthanased 24h later. IUGR brains (n = 9) demonstrated a significant reduction in positive staining for the number of blood vessels (laminin immunohistochemistry) compared with control (n = 8): from 1650 ± 284 to 416 ± 47 cells/mm(2) in subcortical white matter (SCWM) 1793 ± 298 to 385 ± 20 cells/mm(2) in periventricular white matter (PVWM), and 1717 ± 161 to 405 ± 84 cells/mm(2) in the subventricular zone (SVZ). The decrease in vascular density was associated with a significant decrease in VEGF immunoreactivity. The percentage of blood vessels exhibiting endothelial cell proliferation (Ki67 positive) varied regionally between 14 to 22% in white matter of control lambs, while only 1-3% of blood vessels in IUGR brains showed proliferation. A 66% reduction in pericyte coverage (α-SMA and desmin) of blood vessels was observed in SCWM, 71% in PVWM, and 73% in SVZ of IUGR lambs, compared to controls. A reduction in peri-vascular astrocytes (GFAP and laminin) was also observed throughout the white matter of IUGR lambs, and extravasation of albumin into the brain parenchyma was present, indicative of increased permeability of the blood brain barrier. Chronic hypoxia associated with IUGR results in a reduction in vascular density in the white matter of IUGR newborn brains. Vascular pericyte coverage and peri-vascular astrocytes, both of which are essential for stabilisation of blood vessels and the maintenance of vascular permeability, were also decreased in the white matter of IUGR lambs. In turn, these vascular changes could lead to inadequate oxygen supply and contribute to under-perfusion and increased vulnerability of white matter in IUGR infants.


Assuntos
Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Retardo do Crescimento Fetal/fisiopatologia , Hipóxia/fisiopatologia , Ovinos/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Lesões Encefálicas/embriologia , Doença Crônica , Ovinos/embriologia
16.
PLoS One ; 8(11): e77377, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223120

RESUMO

Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle--compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies.


Assuntos
Asfixia/patologia , Encéfalo/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Recém-Nascidos , Animais Lactentes , Apoptose , Comportamento Animal , Caspase 3/metabolismo , Feminino , Gravidez , Ovinos , Cordão Umbilical/irrigação sanguínea
17.
Front Neurosci ; 7: 194, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24167471

RESUMO

In the research, clinical, and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however, this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical, and logistical considerations, together with the propensity for native cells to form teratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs), or umbilical cord blood (UCB) stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs), and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain injury.

18.
Microvasc Res ; 85: 1-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23041509

RESUMO

Hypoxia can significantly contribute to the development of permanent brain injury in the term neonate; however the response of cerebral blood vessels is not well understood. This study aimed to quantitatively measure vascular density and morphology using laminin immunohistochemistry as a marker of blood vessels, and determine the effects of a single, severe bout of hypoxia (umbilical cord occlusion, UCO) late in gestation on the developing cerebrovasculature in fetal sheep. At 124-126 days gestation singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10 min UCO or sham UCO (n=5) occurred at 132 days gestation. Fetal brains were collected at 24 h (n=5) or 48 h (n=4) after UCO for vascular density and morphology analysis of laminin immunohistochemistry. 48 h following a single, brief bout of severe hypoxia late in gestation decreased vascular density was seen in the caudate nucleus and no changes in vascular morphology occurred. However closer analysis revealed a significant shift in the frequency of smaller (≤10 µm) to larger (≤100 µm) perimeter blood vessels in periventricular and subcortical white matter. Close examination of the frequency distribution of vascular perimeter highlights that alterations in vascular morphology persist in the near term fetal brain for up to 48 h following a brief (10 min) hypoxia in white but not gray matter. These findings suggest that the near term brain may still be vulnerable to white matter injury following in utero hypoxia.


Assuntos
Encéfalo/embriologia , Circulação Cerebrovascular , Hipóxia , Animais , Encéfalo/patologia , Cateterismo , Biologia do Desenvolvimento , Feminino , Imuno-Histoquímica/métodos , Laminina/metabolismo , Gravidez , Prenhez , Ovinos , Carneiro Doméstico , Fatores de Tempo , Cordão Umbilical/patologia
19.
Pediatr Res ; 73(3): 310-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23222909

RESUMO

BACKGROUND: Fetal hypoxia contributes significantly to the pathogenesis of permanent perinatal brain injury. We hypothesized that hypoxia-induced cerebral angiogenesis and microvascular changes would occur in fetal sheep subjected to a severe hypoxic insult produced by umbilical cord occlusion (UCO) for 10 min. METHODS: At 124-126 d of gestation, singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10-min UCO or sham UCO (n = 5) was induced at 130 d gestation. The fetal brain was collected at 24 h (n = 5) or 48 h (n = 4) after UCO for immunohistochemical analysis of vascular endothelial growth factor (VEGF), Ki67, and serum albumin. RESULTS: By 48 h after UCO, the percentage of blood vessels expressing VEGF had increased in the subventricular zone, periventricular and subcortical white matter, corpus callosum, and cortex. Alterations in vascular permeability (albumin extravasation) were observed only in the periventricular and subcortical white matter and the subventricular zone following UCO. CONCLUSION: The upregulation of VEGF expression and increased leakage of plasma protein in the fetal sheep brain show that the microvasculature in white matter is sensitive to hypoxia in the near-term brain.


Assuntos
Hipóxia Fetal/metabolismo , Hipóxia Encefálica/metabolismo , Neovascularização Patológica/etiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Análise de Variância , Animais , Gasometria , Pressão Sanguínea , Hipóxia Fetal/complicações , Frequência Cardíaca , Concentração de Íons de Hidrogênio , Hipóxia Encefálica/complicações , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Ligadura , Albumina Sérica/análise , Ovinos , Fatores de Tempo , Cordão Umbilical/cirurgia
20.
Am J Obstet Gynecol ; 198(1): 117.e1-11, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18166323

RESUMO

OBJECTIVE: The purpose of this study was to determine whether uteroplacental delivery of endotoxin produces fetal systemic and central nervous system reactions that are suggestive of inflammation. STUDY DESIGN: Lipopolysaccharide (30 or 60 microg) was administered into the uterine artery of late gestation (135 +/- 0.3 days) pregnant sheep. Fetal blood was assayed to determine changes in levels of quinolinic acid, which is a metabolite of tryptophan that is produced by monocytes (macrophages, microglia). Fetal brains were collected after 72 hours and examined for the presence of activated microglia and parenchymal macrophages. RESULTS: The brains of treated fetuses showed microglial activation and macrophage infiltration, which varied between brain region and lipopolysaccharide dose. Cell death that had been determined by cresyl violet/acid fuchsin staining was observed in the external capsule. There was significant increase of quinolinic acid in the fetal circulation, but no lipopolysaccharide was detected. CONCLUSION: Uteroplacental inflammation results in significant microglial activation and macrophage infiltration without direct fetal exposure to endotoxin, which suggests that placental responses contribute to perinatal brain damage that is associated with infection during pregnancy.


Assuntos
Encéfalo/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/fisiologia , Microglia/fisiologia , Circulação Placentária/efeitos dos fármacos , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Idade Gestacional , Infusões Intra-Arteriais , Macrófagos/efeitos dos fármacos , Comportamento Materno/efeitos dos fármacos , Microglia/efeitos dos fármacos , Gravidez , Prenhez , Probabilidade , Sensibilidade e Especificidade , Ovinos , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA