Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 44(11): 1975-1984, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30986819

RESUMO

Prepulse inhibition (PPI) of startle response is a measure of sensorimotor gating that is impaired in schizophrenia and in many other clinical conditions. Rat models using pharmacological or surgical strategies reveal that PPI is modulated by the cortico-striatal-pallido-thalamic (CSPT) circuit. Here, we explore whether spontaneous variation in PPI in intact inbred and outbred rats is associated with functional and structural differences in the CSPT circuit. Inbred Roman High-(RHA) and Low-avoidance (RLA) and outbred heterogeneous stock (HS) rats were assessed for PPI, brain activity, and brain volume. Brain activity was assessed by c-Fos expression and brain volume by magnetic resonance imaging. Relevant structures of the CSPT circuit were evaluated, such as the medial prefrontal cortex (mPFC), cingulate cortex, hippocampus (HPC), amygdala, nucleus accumbens (NAc), and dorsal striatum. RHA showed lower PPI than RLA rats, while HS rats were stratified by their PPI levels in three groups. Reduced PPI was accompanied by decreased mPFC activity in Roman and HS rats and increased NAc shell activity in HS rats. Low PPI was also associated with decreased mPFC and HPC volumes in Roman and HS rats. This study reports a consistent relationship between decreased function and volume of the mPFC and spontaneous low-PPI levels in inbred and outbred intact rats. Moreover, our findings suggest that, apart from a hypoactive and smaller mPFC, a hyperactive NAc and smaller HPC may underlie reduced PPI levels. Our results support the notion that sensorimotor gating is modulated by forebrain structures and highlight the importance of the mPFC in its regulation.


Assuntos
Córtex Pré-Frontal/diagnóstico por imagem , Inibição Pré-Pulso/fisiologia , Esquizofrenia/diagnóstico por imagem , Filtro Sensorial/fisiologia , Animais , Imageamento por Ressonância Magnética , Masculino , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Reflexo de Sobressalto/fisiologia , Esquizofrenia/metabolismo
2.
Exp Gerontol ; 46(9): 723-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21601629

RESUMO

Brain aging is associated to several morphological and functional alterations that influence the evolution and outcome of CNS damage. Acute brain injury such as an excitotoxic insult induces initial tissue damage followed by associated inflammation and oxidative stress, partly attributed to neutrophil recruitment and the expression of oxidative enzymes such as myeloperoxidase (MPO), among others. However, to date, very few studies have focused on how age can influence neutrophil infiltration after acute brain damage. Therefore, to evaluate the age-dependent pattern of neutrophil cell infiltration following an excitotoxic injury, intrastriatal injection of N-methyl-d-aspartate was performed in young and aged male Wistar rats. Animals were sacrificed at different times between 12h post-lesion (hpl) to 14 days post-lesion (dpl). Cryostat sections were processed for myeloperoxidase (MPO) immunohistochemistry, and double labeling for either neuronal cells (NeuN), astrocytes (GFAP), perivascular macrophages (ED-2), or microglia/macrophages (tomato lectin histochemistry). Our observations showed that MPO + cells were observed in the injured striatum from 12 hpl (when maximum values were found) until 7 dpl, when cell density was strongly diminished. However, at all survival times analyzed, the overall density of MPO + cells was lower in the aged versus the adult injured striatum. MPO + cells were mainly identified as neutrophils (especially at 12 hpl and 1 dpl), but it should be noted that MPO + neurons and microglia/macrophages were also found. MPO + neurons were most commonly observed at 12 hpl and reduced in the aged. MPO + microglia/macrophages were the main population expressing MPO from 3 dpl, when density was also reduced in aged subjects. These results point to neutrophil infiltration as another important factor contributing to the different responses of the adult and aged brain to damage, highlighting the need of using aged animals for the study of acute age-related brain insults.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Infiltração de Neutrófilos , Peroxidase/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Corpo Estriado/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios , Imuno-Histoquímica , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , N-Metilaspartato , Neurônios/metabolismo , Neurônios/patologia , Peroxidase/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA