Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells Dev ; 168: 203721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34271226

RESUMO

Compartment boundaries prevent cell mixing during animal development. In the early Drosophila embryo, the mesectoderm is a group of glial precursors that separate ectoderm and mesoderm, forming the ventral midline. Mesectoderm cells undergo one round of oriented divisions during axis elongation and are eventually internalized 6 h later. Using spinning disk confocal microscopy and image analysis, we found that after dividing, mesectoderm cells reversed their planar polarity. The polarity factor Bazooka was redistributed to mesectoderm-mesectoderm cell interfaces, and the molecular motor non-muscle Myosin II and its upstream activator Rho-kinase (Rok) accumulated at mesectoderm-ectoderm (ME) interfaces, forming supracellular cables flanking the mesectoderm on either side of the tissue. Laser ablation revealed the presence of increased tension at ME cables, where Myosin was stabilized, as shown by fluorescence recovery after photobleaching. We used laser nanosurgery to reduce tension at the ME boundary, and we found that Myosin fluorescence decreased rapidly, suggesting a role for tension in ME boundary maintenance. Mathematical modelling predicted that increased tension at the ME boundary was necessary to prevent the premature establishment of contacts between the two ectodermal sheets on opposite sides of the mesectoderm, thus controlling the timing of mesectoderm internalization. We validated the model in vivo: Myosin inhibition disrupted the linearity of the ME boundary and resulted in early internalization of the mesectoderm. Our results suggest that the redistribution of Rok polarizes Myosin and Bazooka within the mesectoderm to establish tissue boundaries, and that ME boundaries control the timely internalization of the mesectoderm as embryos develop.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster , Miosina Tipo II , Miosinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA