Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 64(2): 100328, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626966

RESUMO

HDL are dynamic transporters of diverse molecular cargo and play critical roles in lipid metabolism and inflammation. We have previously reported that HDL transport both host and nonhost small RNAs (sRNA) based on quantitative PCR and sRNA sequencing approaches; however, these methods require RNA isolation steps which have potential biases and may not isolate certain forms of RNA molecules from samples. HDL have also been reported to accept functional sRNAs from donor macrophages and deliver them to recipient endothelial cells; however, using PCR to trace HDL-sRNA intercellular communication has major limitations. The present study aims to overcome these technical barriers and further understand the pathways involved in HDL-mediated bidirectional flux of sRNAs between immune cells. To overcome these technical limitations, SYTO RNASelect, a lipid-penetrating RNA dye, was used to quantify a) overall HDL-sRNA content, b) bidirectional flux of sRNAs between HDL and immune cells, c) HDL-mediated intercellular communication between immune cells, and d) HDL-mediated RNA export changes in disease. Live cell imaging and loss-of-function assays indicate that the endo-lysosomal system plays a critical role in macrophage storage and export of HDL-sRNAs. These results identify HDL as a substantive mediator of intercellular communication between immune cells and demonstrate the importance of endocytosis for recipient cells of HDL-sRNAs. Utilizing a lipid-penetrating RNA-specific fluorescence dye, we were able to both quantify the absolute concentration of sRNAs transported by HDL and characterize HDL-mediated intercellular RNA transport between immune cells.


Assuntos
Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Lipoproteínas HDL , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Comunicação Celular , Células Dendríticas/metabolismo
2.
Nat Cell Biol ; 24(12): 1701-1713, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36474072

RESUMO

Macrophages present a spectrum of phenotypes that mediate both the pathogenesis and resolution of atherosclerotic lesions. Inflammatory macrophage phenotypes are pro-atherogenic, but the stimulatory factors that promote these phenotypes remain incompletely defined. Here we demonstrate that microbial small RNAs (msRNA) are enriched on low-density lipoprotein (LDL) and drive pro-inflammatory macrophage polarization and cytokine secretion via activation of the RNA sensor toll-like receptor 8 (TLR8). Removal of msRNA cargo during LDL re-constitution yields particles that readily promote sterol loading but fail to stimulate inflammatory activation. Competitive antagonism of TLR8 with non-targeting locked nucleic acids was found to prevent native LDL-induced macrophage polarization in vitro, and re-organize lesion macrophage phenotypes in vivo, as determined by single-cell RNA sequencing. Critically, this was associated with reduced disease burden in distinct mouse models of atherosclerosis. These results identify LDL-msRNA as instigators of atherosclerosis-associated inflammation and support alternative functions of LDL beyond cholesterol transport.


Assuntos
Macrófagos , Receptor 8 Toll-Like , Animais , Camundongos , Receptor 8 Toll-Like/genética , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA