Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Neurochem ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115025

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12-24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.

2.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920665

RESUMO

Pleural mesothelioma (PM) is a highly aggressive tumor that is caused by asbestos exposure and lacks effective therapeutic regimens. Current procedures for PM diagnosis are invasive and can take a long time to reach a definitive result. Small extracellular vesicles (sEVs) have been identified as important communicators between tumor cells and their microenvironment via their cargo including circular RNAs (circRNAs). CircRNAs are thermodynamically stable, highly conserved, and have been found to be dysregulated in cancer. This study aimed to identify potential biomarkers for PM diagnosis by investigating the expression of specific circRNA gene pattern (hsa_circ_0007386) in cells and sEVs using digital polymerase chain reaction (dPCR). For this reason, 5 PM, 14 non-PM, and one normal mesothelial cell line were cultured. The sEV was isolated from the cells using the gold standard ultracentrifuge method. The RNA was extracted from both cells and sEVs, cDNA was synthesized, and dPCR was run. Results showed that hsa_circ_0007386 was significantly overexpressed in PM cell lines and sEVs compared to non-PM and normal mesothelial cell lines (p < 0.0001). The upregulation of hsa_circ_0007386 in PM highlights its potential as a diagnostic biomarker. This study underscores the importance and potential of circRNAs and sEVs as cancer diagnostic tools.


Assuntos
Biomarcadores Tumorais , Vesículas Extracelulares , Mesotelioma , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mesotelioma/genética , Mesotelioma/diagnóstico , Linhagem Celular Tumoral , Neoplasias Pleurais/genética , Neoplasias Pleurais/diagnóstico , Regulação Neoplásica da Expressão Gênica , Mesotelioma Maligno/genética , Mesotelioma Maligno/diagnóstico
3.
Int J Tryptophan Res ; 17: 11786469241248287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757094

RESUMO

Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.

4.
Cells ; 12(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998368

RESUMO

Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.


Assuntos
Esclerose Múltipla , Peptídeo Intestinal Vasoativo , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Peptídeo Intestinal Vasoativo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais/fisiologia , Estresse do Retículo Endoplasmático
5.
J Mol Neurosci ; 73(9-10): 724-737, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37646964

RESUMO

Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.


Assuntos
Receptores do Hormônio Hipofisário , Traumatismos da Medula Espinal , Feminino , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ratos Sprague-Dawley , Receptores do Hormônio Hipofisário/genética , Receptores do Hormônio Hipofisário/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Traumatismos da Medula Espinal/metabolismo , Encéfalo/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446298

RESUMO

Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most common and severe manifestations of lupus; however, its pathogenesis is still poorly understood. While there is sparse evidence suggesting that the ongoing autoimmunity may trigger pathogenic changes to the central nervous system (CNS) microvasculature, culminating in inflammatory/ischemic damage, further evidence is still needed. In this study, we used the spontaneous mouse model of SLE (NZBWF1 mice) to investigate the expression of genes and proteins associated with endothelial (dys)function: tissue and urokinase plasminogen activators (tPA and uPA), intercellular and vascular adhesion molecules 1 (ICAM-1 and VCAM-1), brain derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 4 (KLF4) and neuroprotection/immune modulation: pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), PACAP receptor (PAC1), VIP receptors 1 and 2 (VPAC1 and VPAC2). Analyses were carried out both in the hippocampus and striatum of SLE mice of two different age groups (2 and 7 months old), since age correlates with disease severity. In the hippocampus, we identified a gene/protein expression profile indicative of mild endothelial dysfunction, which increased in severity in aged SLE mice. These alterations were paralleled by moderate alterations in the expression of VIP, PACAP and related receptors. In contrast, we report a robust upregulation of endothelial activation markers in the striatum of both young and aged mice, concurrent with significant induction of the VIP/PACAP system. These data identify molecular signatures of endothelial alterations in the hippocampus and striatum of NZBWF1 mice, which are accompanied by a heightened expression of endogenous protective/immune-modulatory neuropeptides. Collectively, our results support the idea that NPSLE may cause alterations of the CNS micro-vascular compartment that cannot be effectively counteracted by the endogenous activity of the neuropeptides PACAP and VIP.


Assuntos
Lúpus Eritematoso Sistêmico , Peptídeo Intestinal Vasoativo , Camundongos , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Receptores Tipo II de Peptídeo Intestinal Vasoativo
7.
Biomedicines ; 10(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36551930

RESUMO

Systemic administration of rotenone replicates several pathogenic and behavioural features of Parkinson's disease (PD), some of which cannot be explained by deficits of the nigrostriatal pathway. In this study, we provide a comprehensive analysis of several neurochemical alterations triggered by systemic rotenone administration in the CNS of C57BL/6 mice. Mice injected with either 1, 3 or 10 mg/kg rotenone daily via intraperitoneal route for 21 days were assessed weekly for changes in locomotor and exploratory behaviour. Rotenone treatment caused significant locomotor and exploratory impairment at dosages of 3 or 10 mg/kg. Molecular analyses showed reductions of both TH and DAT expression in the midbrain, striatum and spinal cord, accompanied by altered expression of dopamine receptors and brain-derived neurotrophic factor (BDNF). Rotenone also triggered midbrain-restricted inflammatory responses with heightened expression of glial markers, which was not seen in extra-nigral regions. However, widespread alterations of mitochondrial function and increased signatures of oxidative stress were identified in both nigral and extra-nigral regions, along with disruptions of neuroprotective peptides, such as pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP) and activity-dependent neuroprotective protein (ADNP). Altogether, this study shows that systemic rotenone intoxication, similarly to PD, causes a series of neurochemical alterations that extend at multiple CNS levels, reinforcing the suitability of this pre-clinical model for the study extra-nigral defects of PD.

8.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563181

RESUMO

Multiple sclerosis (MS) is a chronic neuroinflammatory and demyelinating disease of the central nervous system (CNS), characterised by the infiltration of peripheral immune cells, multifocal white-matter lesions, and neurodegeneration. In recent years, microglia have emerged as key contributors to MS pathology, acting as scavengers of toxic myelin/cell debris and modulating the inflammatory microenvironment to promote myelin repair. In this review, we explore the role of two neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), as important regulators of microglial functioning during demyelination, myelin phagocytosis, and remyelination, emphasising the potential of these neuropeptides as therapeutic targets for the treatment of MS.


Assuntos
Esclerose Múltipla , Peptídeo Intestinal Vasoativo , Humanos , Microglia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase
9.
J Integr Neurosci ; 21(1): 33, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164469

RESUMO

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two widely expressed neuropeptides with important immunomodulatory and neuroprotective properties in the central nervous system (CNS). Both VIP and PACAP have been implicated in several neurological diseases and have shown favourable effects in different animal models of multiple sclerosis (MS). MS is a chronic inflammatory and neurodegenerative disease of the CNS affecting over 2.5 million people worldwide. The disease is characterised by extensive neuroinflammation, demyelination and axonal loss. Currently, there is no cure for MS, with treatment options only displaying partial efficacy. Importantly, epidemiological studies in the MS population have demonstrated that there is a high incidence of neurological and psychological comorbidities such as depression, anxiety, epilepsy and stroke among afflicted people. Hence, given the widespread protective effects of the VIP/PACAP system in the CNS, this review will aim at exploring the beneficial roles of VIP and PACAP in ameliorating some of the most common neurological comorbidities associated with MS. The final scope of the review is to put more emphasis on how targeting the VIP/PACAP system may be an effective therapeutic strategy to modify MS disease course and its associated comorbidities.


Assuntos
Transtornos Mentais/metabolismo , Esclerose Múltipla/metabolismo , Doenças do Sistema Nervoso/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Comorbidade , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/epidemiologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/epidemiologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/epidemiologia
10.
J Mol Neurosci ; 72(11): 2163-2175, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35199308

RESUMO

Rotenone is a commercial pesticide commonly used to model Parkinson's disease (PD) due to its ability to induce dopaminergic degeneration. Studies have confirmed that rotenone causes microglial activation, which seems to contribute to the toxic effects seen in rodent models. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that have robust neuroprotective and anti-inflammatory properties. However, their ability to regulate microglial activity in response to rotenone is not fully understood. Using rotenone as an inflammatory stimulus, we tested whether PACAP or VIP could mitigate microglial activation in BV2 microglial cells. Rotenone dose-dependently reduced cell viability and the percentage of apoptotic cells. It also increased the release of nitric oxide (NO) in culture media and the expression of microglial activation markers and pro-inflammatory markers, including CD11b, MMP-9 and IL-6, and heightened the endogenous levels of PACAP and its preferring receptor PAC1. Co-treatment with PACAP or VIP prevented rotenone-induced increase of NO, CD11b, MMP-9 and IL-6. These results indicate that both PACAP and VIP are able to prevent the pro-inflammatory effects of rotenone in BV2 cells, supporting the idea that these molecules can have therapeutic value in slowing down PD progression.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Peptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Microglia , Rotenona/toxicidade , Metaloproteinase 9 da Matriz , Interleucina-6/genética
11.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163768

RESUMO

A pharmacological and genetic blockade of the dopamine D3 receptor (D3R) has shown to be neuroprotective in models of Parkinson's disease (PD). The anxiolytic drug buspirone, a serotonin receptor 1A agonist, also functions as a potent D3R antagonist. To test if buspirone elicited neuroprotective activities, C57BL/6 mice were subjected to rotenone treatment (10mg/kg i.p for 21 days) to induce PD-like pathology and were co-treated with increasing dosages of buspirone (1, 3, or 10 mg/kg i.p.) to determine if the drug could prevent rotenone-induced damage to the central nervous system (CNS). We found that high dosages of buspirone prevented the behavioural deficits caused by rotenone in the open field test. Molecular and histological analyses confirmed that 10 mg/kg of buspirone prevented the degeneration of TH-positive neurons. Buspirone attenuated the induction of interleukin-1ß and interleukin-6 expression by rotenone, and this was paralleled by the upregulation of arginase-1, brain-derived neurotrophic factor (BDNF), and activity-dependent neuroprotective protein (ADNP) in the midbrain, striatum, prefrontal cortex, amygdala, and hippocampus. Buspirone treatment also improved mitochondrial function and antioxidant activities. Lastly, the drug prevented the disruptions in the expression of two neuroprotective peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP). These results pinpoint the neuroprotective efficacy of buspirone against rotenone toxicity, suggesting its potential use as a therapeutic agent in neurodegenerative and neuroinflammatory diseases, such as PD.


Assuntos
Buspirona/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Rotenona/toxicidade , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Buspirona/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/psicologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Peptídeo Intestinal Vasoativo/genética
12.
Neural Regen Res ; 17(2): 378-385, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34269213

RESUMO

Evidence suggests that rapid changes to supporting glia may predispose individuals with spinal cord injury (SCI) to such comorbidities. Here, we interrogated the expression of astrocyte- and microglial-specific markers glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in the rat brain in the first 24 hours following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebral body (SCI group), the other half did not (Sham group). Twenty-four hours post-surgery the amygdala, periaqueductal grey, prefrontal cortex, hypothalamus, lateral thalamus, hippocampus (dorsal and ventral) in rats were collected. GFAP and Iba1 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, GFAP mRNA and protein expression increased in the amygdala and hypothalamus. In contrast, gene and protein expression decreased in the thalamus and dorsal hippocampus. Interestingly, Iba1 transcripts and proteins were significantly diminished only in the dorsal and ventral hippocampus, where gene expression diminished. These findings demonstrate that as early as 24 hours post-SCI there are region-specific disruptions of GFAP and Iba1 transcript and protein levels in higher brain regions. All procedures were approved by the University of Technology Sydney Institutional Animal Care and Ethics Committee (UTS ACEC13-0069).

13.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948457

RESUMO

High-fat diet (HFD)-induced comorbid cognitive and behavioural impairments are thought to be the result of persistent low-grade neuroinflammation. Metformin, a first-line medication for the treatment of type-2 diabetes, seems to ameliorate these comorbidities, but the underlying mechanism(s) are not clear. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are neuroprotective peptides endowed with anti-inflammatory properties. Alterations to the PACAP/VIP system could be pivotal during the development of HFD-induced neuroinflammation. To unveil the pathogenic mechanisms underlying HFD-induced neuroinflammation and assess metformin's therapeutic activities, (1) we determined if HFD-induced proinflammatory activity was present in vulnerable brain regions associated with the development of comorbid behaviors, (2) investigated if the PACAP/VIP system is altered by HFD, and (3) assessed if metformin rescues such diet-induced neurochemical alterations. C57BL/6J male mice were divided into two groups to receive either standard chow (SC) or HFD for 16 weeks. A further HFD group received metformin (HFD + M) (300 mg/kg BW daily for 5 weeks) via oral gavage. Body weight, fasting glucose, and insulin levels were measured. After 16 weeks, the proinflammatory profile, glial activation markers, and changes within the PI3K/AKT intracellular pathway and the PACAP/VIP system were evaluated by real-time qPCR and/or Western blot in the hypothalamus, hippocampus, prefrontal cortex, and amygdala. Our data showed that HFD causes widespread low-grade neuroinflammation and gliosis, with regional-specific differences across brain regions. HFD also diminished phospho-AKT(Ser473) expression and caused significant disruptions to the PACAP/VIP system. Treatment with metformin attenuated these neuroinflammatory signatures and reversed PI3K/AKT and PACAP/VIP alterations caused by HFD. Altogether, our findings demonstrate that metformin treatment rescues HFD-induced neuroinflammation in vulnerable brain regions, most likely by a mechanism involving the reinstatement of PACAP/VIP system homeostasis. Data also suggests that the PI3K/AKT pathway, at least in part, mediates some of metformin's beneficial effects.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Encefalite/tratamento farmacológico , Metformina/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Estudos de Casos e Controles , Regulação para Baixo , Encefalite/induzido quimicamente , Encefalite/genética , Encefalite/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/genética
14.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681607

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related immunosuppressive peptides. However, the underlying mechanisms through which these peptides regulate microglial activity are not fully understood. Using lipopolysaccharide (LPS) to induce an inflammatory challenge, we tested whether PACAP or VIP differentially affected microglial activation, morphology and cell migration. We found that both peptides attenuated LPS-induced expression of the microglial activation markers Iba1 and iNOS (### p < 0.001), as well as the pro-inflammatory mediators IL-1ß, IL-6, Itgam and CD68 (### p < 0.001). In contrast, treatment with PACAP or VIP exerted distinct effects on microglial morphology and migration. PACAP reversed LPS-induced soma enlargement and increased the percentage of small-sized, rounded cells (54.09% vs. 12.05% in LPS-treated cells), whereas VIP promoted a phenotypic shift towards cell subpopulations with mid-sized, spindle-shaped somata (48.41% vs. 31.36% in LPS-treated cells). Additionally, PACAP was more efficient than VIP in restoring LPS-induced impairment of cell migration and the expression of urokinase plasminogen activator (uPA) in BV2 cells compared with VIP. These results suggest that whilst both PACAP and VIP exert similar immunosuppressive effects in activated BV2 microglia, each peptide triggers distinctive shifts towards phenotypes of differing morphologies and with differing migration capacities.


Assuntos
Microglia/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Fenótipo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
15.
J Mol Neurosci ; 71(3): 565-582, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32789724

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor symptoms such as bradykinesia, resting tremor, and rigidity. PD diagnosis is based on medical history, review of signs, symptoms, neurological and physical examinations. Unfortunately, by the time the disease is diagnosed, dopamine (DA) neuronal loss is often extended, thereby resulting in ineffective therapies. Recent evidence suggests that neuroinflammation may be pivotal during PD onset and progression. However, suitable cellular models and biomarkers to detect early signs of neuroinflammation are still missing. In this study, we developed a well-differentiated DAergic neuronal cell line where we triggered a neuroinflammatory response to assess the temporal expression of the tissue- and urokinase plasminogen activators (tPA and uPA) and their endogenous inhibitor (PAI-1) along with that of pro-inflammatory mediators and the neuronal marker nNOS. Human neuroblastoma cells SH-SY5Y were differentiated into DAergic neuronal-like cells using a combination of 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum depletion. Terminally-differentiated neurons were then exposed to lipopolysaccharide (LPS) for short (up to 24 h) or long term (up to 10 days) to mimic acute or chronic inflammation. Results demonstrated that uPA protein expression was stably upregulated during chronic inflammation, whereas the expression of nNOS protein better reflected the cellular response to acute inflammation. Additional studies revealed that the temporal induction of uPA was associated with increased AKT phosphorylation, but did not seem to involve cAMP-responsive element-binding protein (CREB) activation, nor the mitogen-activated protein kinase (MAPK) pathway. In conclusion, our in vitro data suggests that nNOS and uPA may serve as viable candidate biomarkers of acute and chronic neuroinflammation.


Assuntos
Técnicas de Reprogramação Celular/métodos , Neurônios Dopaminérgicos/citologia , Doença de Parkinson/metabolismo , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Neurogênese , Óxido Nítrico Sintase Tipo I/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
16.
Histol Histopathol ; 35(11): 1251-1262, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32542641

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is an evolutionally well conserved neuropeptide, mainly expressed by neuronal and peripheral cells. It proves to be an interesting object of study both for its trophic functions during the development of several tissues and for its protective effects against oxidative stress, hypoxia, inflammation and apoptosis in different degenerative diseases. This brief review summarises the recent findings concerning the role of PACAP in the articular cartilage. PACAP and its receptors are expressed during chondrogenesis and are shown to activate the pathways involved in regulating cartilage development. Moreover, this neuropeptide proves to be chondroprotective against those stressors that determine cartilage degeneration and contribute to the onset of osteoarthritis (OA), the most common form of degenerative joint disease. Indeed, the degenerated cartilage exhibits low levels of PACAP, suggesting that its endogenous levels in adult cartilage may play an essential role in maintaining physiological properties. Thanks to its peculiar characteristics, exogenous administration of PACAP could be suggested as a potential tool to slow down the progression of OA and for cartilage regeneration approaches.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrogênese , Osteoartrite/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Antirreumáticos/uso terapêutico , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Condrogênese/efeitos dos fármacos , Humanos , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais
17.
Materials (Basel) ; 13(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455683

RESUMO

The management of chondral defects represents a big challenge because of the limited self-healing capacity of cartilage. Many approaches in this field obtained partial satisfactory results. Cartilage tissue engineering, combining innovative scaffolds and stem cells from different sources, emerges as a promising strategy for cartilage regeneration. The aim of this study was to evaluate the capability of a cell-free collagen I-based scaffold to promote cartilaginous repair after orthotopic implantation in vivo. Articular cartilage lesions (ACL) were created at the femoropatellar groove in rat knees and cell free collagen I-based scaffolds (S) were then implanted into right knee defect for the ACL-S group. No scaffold was implanted for the ACL group. At 4-, 8- and 16-weeks post-transplantation, degrees of cartilage repair were evaluated by morphological, histochemical and gene expression analyses. Histological analysis shows the formation of fibrous tissue, at 4-weeks replaced by a tissue resembling the calcified one at 16-weeks in the ACL group. In the ACL-S group, progressive replacement of the scaffold with the newly formed cartilage-like tissue is shown, as confirmed by Alcian Blue staining. Immunohistochemical and quantitative real-time PCR (qRT-PCR) analyses display the expression of typical cartilage markers, such as collagen type I and II (ColI and ColII), Aggrecan and Sox9. The results of this study display that the collagen I-based scaffold is highly biocompatible and able to recruit host cells from the surrounding joint tissues to promote cartilaginous repair of articular defects, suggesting its use as a potential approach for cartilage tissue regeneration.

18.
Int J Mol Sci ; 20(3)2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691048

RESUMO

The purpose of this study was to investigate the influence of moderate physical activity (MPA) on the expression of osteoarthritis (OA)-related (IL-1ß, IL-6, TNF-α, MMP-13) and anti-inflammatory and chondroprotective (IL-4, IL-10, lubricin) biomarkers in the synovium of an OA-induced rat model. A total of 32 rats were divided into four groups: Control rats (Group 1); rats performing MPA (Group 2); anterior cruciate ligament transection (ACLT)-rats with OA (Group 3); and, ACLT-rats performing MPA (Group 4). Analyses were performed using Hematoxylin & Eosin (H & E) staining, histomorphometry and immunohistochemistry. In Group 3, OA biomarkers were significantly increased, whereas, IL-4, IL-10, and lubricin were significantly lower than in the other experimental groups. We hypothesize that MPA might partake in rescuing type B synoviocyte dysfunction at the early stages of OA, delaying the progression of the disease.


Assuntos
Lesões do Ligamento Cruzado Anterior/complicações , Citocinas/metabolismo , Osteoartrite do Joelho/prevenção & controle , Condicionamento Físico Animal/métodos , Sinoviócitos/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Masculino , Osteoartrite do Joelho/metabolismo , Ratos , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Neuropeptides ; 74: 60-69, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30579677

RESUMO

Nerve injuries often result in neuropathic pain with co-morbid changes in social behaviours, motivation, sleep-wake cycles and neuroendocrine function. In an animal model of neuropathic injury (CCI) similar co-morbid changes are evoked in a subpopulation (~30%) of injured rats. In addition to anatomical evidence of altered neuronal and glial function, the periaqueductal grey (PAG) of these rats shows evidence of cell death. These changes in the PAG may play a role in the disruption of the normal emotional coping responses triggered by nerve injury. Cell death can occur via a number of mechanisms, including the disruption of neuroprotective mechanisms. Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two endogenous neuropeptides whose activities are tightly regulated by two receptors subtypes, namely the PAC1 and VPAC receptors. These peptides and their receptors exert robust neuroprotective roles. In these studies, we hypothesized that rats expressing disabilities following CCI showed altered expression of PACAP and VIP in the PAG. Rats were categorized as having either Pain alone, Transient or Persistent disability, based on changes in social behaviours pre- and post-CCI. Social interaction behavioural tested (BT), sham-injured and naïve untested rats were also included. For measurements of mRNA and protein expression we utilised micro-dissected PAGs blocks taken from each group. At the mRNA level, VIP was downregulated and PAC1 was upregulated in BT animals, whilst VPAC1 mRNA was specifically increased in the Pain alone group. Interestingly, protein levels of both PACAP and VIP were remarkably increased in the Persistent Disability group. Taken together, sciatic nerve CCI that triggers neuropathic pain and persistent disability results in abnormally increased VIP and PACAP expression in the PAG. Our data also suggest that these effects are likely to be governed by post-transcriptional mechanisms.


Assuntos
Neuralgia/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Nervo Isquiático/lesões , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Comportamento Animal , Masculino , Neuralgia/etiologia , Medição da Dor , Traumatismos dos Nervos Periféricos/complicações , Ratos Sprague-Dawley , Comportamento Social
20.
Int J Mol Sci ; 19(4)2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29587404

RESUMO

Following peripheral nerve injury, dysregulations of certain non-coding microRNAs (miRNAs) occur in Schwann cells. Whether these alterations are the result of local inflammation and/or correlate with perturbations in the expression profile of the protective vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) system is currently unknown. To address these issues, we aimed at profiling the expression of selected miRNAs in the rat RT4 Schwann cell line. Cells exposed to lipopolysaccharide (LPS), to mimic the local inflammatory milieu, were appraised by real-time qPCR, Western blot and ELISAs. We found that upon LPS treatment, levels of pro-inflammatory cytokines (IL-1ß, -6, -18, -17A, MCP-1 and TNFα) increased in a time-dependent manner. Unexpectedly, the expression levels of VIP and PACAP were also increased. Conversely, levels of VPAC1 and VPAC2 receptors were reduced. Downregulated miRNAs included miR-181b, -145, -27a, -340 and -132 whereas upregulated ones were miR-21, -206, -146a, -34a, -155, -204 and -29a, respectively. Regression analyses revealed that a subset of the identified miRNAs inversely correlated with the expression of VPAC1 and VPAC2 receptors. In conclusion, these findings identified a novel subset of miRNAs that are dysregulated by immune challenge whose activities might elicit a regulatory function on the VIP/PACAP system.


Assuntos
Inflamação/metabolismo , MicroRNAs/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células de Schwann/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Ratos , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Análise de Regressão , Células de Schwann/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA