Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37857485

RESUMO

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Assuntos
Córtex Auditivo , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Córtex Auditivo/metabolismo , Espinhas Dendríticas/metabolismo , Tensinas/metabolismo , Memória de Longo Prazo/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Memória de Curto Prazo/fisiologia , Sirolimo/farmacologia , Medo/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Mamíferos
2.
Neurobiol Dis ; 139: 104822, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32113911

RESUMO

DEP-domain containing 5 (DEPDC5) is part of the GATOR1 complex that functions as key inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1). Loss-of-function mutations in DEPDC5 leading to mTOR hyperactivation have been identified as the most common cause of either lesional or non-lesional focal epilepsy. However, the precise mechanisms by which DEPDC5 loss-of-function triggers neuronal and network hyperexcitability are still unclear. In this study, we investigated the cellular mechanisms of hyperexcitability by comparing the constitutive heterozygous Depdc5 knockout mouse versus different levels of acute Depdc5 deletion (≈40% and ≈80% neuronal knockdown of Depdc5 protein) by RNA interference in primary cortical cultures. While heterozygous Depdc5+/- neurons have only a subtle phenotype, acutely knocked-down neurons exhibit a strong dose-dependent phenotype characterized by mTOR hyperactivation, increased soma size, dendritic arborization, excitatory synaptic transmission and intrinsic excitability. The robust synaptic phenotype resulting from the acute knockdown Depdc5 deficiency highlights the importance of the temporal dynamics of Depdc5 knockdown in triggering the phenotypic changes, reminiscent of the somatic second-hit mechanism in patients with focal cortical dysplasia. These findings uncover a novel synaptic phenotype that is causally linked to Depdc5 knockdown, highlighting the developmental role of Depdc5. Interestingly, the synaptic defect appears to affect only excitatory synapses, while inhibitory synapses develop normally. The increased frequency and amplitude of mEPSCs, paralleled by increased density of excitatory synapses and expression of glutamate receptors, may generate an excitation/inhibition imbalance that triggers epileptogenesis.


Assuntos
Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Serina-Treonina Quinases TOR/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Malformações do Desenvolvimento Cortical/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Proteínas Repressoras/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA