Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(1): 129-141, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38082493

RESUMO

Brucella abortus is a facultative, intracellular, zoonotic pathogen that resides inside macrophages during infection. This is a specialized niche where B. abortus encounters various stresses as it navigates through the macrophage. In order to survive this harsh environment, B. abortus utilizes post-transcriptional regulation of gene expression through the use of small regulatory RNAs (sRNAs). Here, we characterize a Brucella sRNAs called MavR (for MurF- and virulence-regulating sRNA), and we demonstrate that MavR is required for the full virulence of B. abortus in macrophages and in a mouse model of chronic infection. Transcriptomic and proteomic studies revealed that a major regulatory target of MavR is MurF. MurF is an essential protein that catalyzes the final cytoplasmic step in peptidoglycan (PG) synthesis; however, we did not detect any differences in the amount or chemical composition of PG in the ΔmavR mutant. A 6-nucleotide regulatory seed region within MavR was identified, and mutation of this seed region resulted in dysregulation of MurF production, as well as significant attenuation of infection in a mouse model. Overall, the present study underscores the importance of sRNA regulation in the physiology and virulence of Brucella.


Assuntos
Brucelose , Pequeno RNA não Traduzido , Animais , Camundongos , Brucella abortus/metabolismo , Regulação da Expressão Gênica , Macrófagos , Camundongos Endogâmicos BALB C , Proteômica , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
2.
Sci Rep ; 10(1): 14968, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917931

RESUMO

LysR-type transcriptional regulators (LTTRs) are the most common type of transcriptional regulators in prokaryotes and function by altering gene expression in response to environmental stimuli. In the class Alphaproteobacteria, a conserved LTTR named VtlR is critical to the establishment of host-microbe interactions. In the mammalian pathogen Brucella abortus, VtlR is required for full virulence in a mouse model of infection, and VtlR activates the expression of abcR2, which encodes a small regulatory RNA (sRNA). In the plant symbiont Sinorhizobium meliloti, the ortholog of VtlR, named LsrB, is involved in the symbiosis of the bacterium with alfalfa. Agrobacterium tumefaciens is a close relative of both B. abortus and S. meliloti, and this bacterium is the causative agent of crown gall disease in plants. In the present study, we demonstrate that VtlR is involved in the ability of A. tumefaciens to grow appropriately in artificial medium, and an A. tumefaciens vtlR deletion strain is defective in motility, biofilm formation, and tumorigenesis of potato discs. RNA-sequencing analyses revealed that more than 250 genes are dysregulated in the ∆vtlR strain, and importantly, VtlR directly controls the expression of three sRNAs in A. tumefaciens. Taken together, these data support a model in which VtlR indirectly regulates hundreds of genes via manipulation of sRNA pathways in A. tumefaciens, and moreover, while the VtlR/LsrB protein is present and structurally conserved in many members of the Alphaproteobacteria, the VtlR/LsrB regulatory circuitry has diverged in order to accommodate the unique environmental niche of each organism.


Assuntos
Agrobacterium tumefaciens , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , Transcrição Gênica , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA-Seq
3.
J Bacteriol ; 202(20)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32747427

RESUMO

RNases are key regulatory components in prokaryotes, responsible for the degradation and maturation of specific RNA molecules at precise times. Specifically, RNases allow cells to cope with changes in their environment through rapid alteration of gene expression. To date, few RNases have been characterized in the mammalian pathogen Brucella abortus In the present work, we sought to investigate several RNases in B. abortus and determine what role, if any, they have in pathogenesis. Of the 4 RNases reported in this study, the highly conserved endoribonuclease, RNase E, was found to play an integral role in the virulence of B. abortus Although rne, which encodes RNase E, is essential in B. abortus, we were able to generate a strain encoding a defective version of RNase E lacking the C-terminal portion of the protein, and this strain (rne-tnc) was attenuated in a mouse model of Brucella infection. RNA-sequencing analysis revealed massive RNA dysregulation in B. abortusrne-tnc, with 122 upregulated and 161 downregulated transcripts compared to the parental strain. Interestingly, several mRNAs related to metal homeostasis were significantly decreased in the rne-tnc strain. We also identified a small regulatory RNA (sRNA), called Bsr4, that exhibited significantly elevated levels in rne-tnc, demonstrating an important role for RNase E in sRNA-mediated regulatory pathways in Brucella Overall, these data highlight the importance of RNase E in B. abortus, including the role of RNase E in properly controlling mRNA levels and contributing to virulence in an animal model of infection.IMPORTANCE Brucellosis is a debilitating disease of humans and animals globally, and there is currently no vaccine to combat human infection by Brucella spp. Moreover, effective antibiotic treatment in humans is extremely difficult and can lead to disease relapse. Therefore, it is imperative that systems and pathways be identified and characterized in the brucellae so new vaccines and therapies can be generated. In this study, we describe the impact of the endoribonuclease RNase E on the control of mRNA and small regulatory RNA (sRNA) levels in B. abortus, as well as the importance of RNase E for the full virulence of B. abortus This work greatly enhances our understanding of ribonucleases in the biology and pathogenesis of Brucella spp.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Brucelose/microbiologia , Endorribonucleases/metabolismo , RNA Mensageiro/genética , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Endorribonucleases/genética , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , RNA-Seq , Virulência
4.
Microbiology (Reading) ; 164(10): 1320-1325, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30062985

RESUMO

Metals are essential micronutrients for virtually all forms of life, but metal acquisition is a double-edged sword, because high concentrations of divalent cations can be toxic to the cell. Therefore, the genes involved in metal acquisition, storage and efflux are tightly regulated. The present study characterizes a nickel-responsive transcriptional regulator in the intracellular mammalian pathogen, Brucella abortus. Deletion of bab2_0432 (nikR) in B. abortus led to alterations in the nickel-responsive expression of the genes encoding the putative nickel importer NikABCDE and, moreover, NikR binds directly to a specific DNA sequence within the promoter region of nikA in a metal-dependent manner to control gene expression. While NikR is involved in controlling the expression of nikA, nikR is not required for the infection of macrophages or mice by B. abortus. Overall, this work characterizes the role of NikR in nickel-responsive gene expression, as well as the dispensability of nikR for Brucella virulence.


Assuntos
Brucella abortus/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Brucella abortus/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos BALB C , Mutação , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
5.
J Bacteriol ; 200(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29967118

RESUMO

Elucidating the function of proteins <50 amino acids in length is no small task. Nevertheless, small proteins can play vital roles in the lifestyle of bacteria and influence the virulence of pathogens; thus, the investigation of the small proteome is warranted. Recently, our group identified the Brucella abortus protein VtlR as a transcriptional activator of four genes, one of which is the well-studied small regulatory RNA AbcR2, while the other three genes encode hypothetical small proteins, two of which are highly conserved among the order Rhizobiales This study provides evidence that all three genes encode authentic small proteins and that all three are highly expressed under oxidative stress, low-pH, and stationary-phase growth conditions. Fractionation of the cells revealed that the proteins are localized to the membranes of B. abortus We demonstrate that the small proteins under the transcriptional control of VtlR are not accountable for attenuation observed with the B. abortusvtlR deletion strain. However, there is an association between VtlR-regulated genes and growth inhibition in the presence of the sugar l-fucose. Subsequent transcriptomic analyses revealed that B. abortus initiates the transcription of a locus encoding a putative sugar transport and utilization system when the bacteria are cultured in the presence of l-fucose. Altogether, our observations characterize the role of the VtlR-controlled small proteins BAB1_0914, BAB2_0512, and BAB2_0574 in the biology of B. abortus, particularly in the capacity of the bacteria to utilize l-fucose.IMPORTANCE Despite being one of the most common zoonoses worldwide, there is currently no human vaccine to combat brucellosis. Therefore, a better understanding of the pathogenesis and biology of Brucella spp., the causative agent of brucellosis, is essential for the discovery of novel therapeutics against these highly infectious bacteria. In this study, we further characterize the virulence-associated transcriptional regulator VtlR in Brucella abortus Our findings not only shed light on our current understanding of a virulence related genetic system in Brucella spp. but also increase our knowledge of small proteins in the field of bacteriology.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/genética , Brucella abortus/metabolismo , Fucose/metabolismo , Animais , Brucelose , Células Cultivadas , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632093

RESUMO

The YbeY endoribonuclease is one of the best-conserved proteins across the kingdoms of life. In the present study, we demonstrated that YbeY in Brucella abortus is linked to a variety of important activities, including proper cellular morphology, mRNA transcript levels, and virulence. Deletion of ybeY in B. abortus led to a small-colony phenotype when the bacteria were grown on agar medium, as well as to significant aberrations in the morphology of the bacterial cell as evidenced by electron microscopy. Additionally, compared to the parental strain, the ΔybeY strain was significantly attenuated in both macrophage and mouse models of infection. The ΔybeY strain also showed increased sensitivities to several in vitro-applied stressors, including bile acid, hydrogen peroxide, SDS, and paraquat. Transcriptomic analysis revealed that a multitude of mRNA transcripts are dysregulated in the ΔybeY strain, and many of the identified mRNAs encode proteins involved in metabolism, nutrient transport, transcriptional regulation, and flagellum synthesis. We subsequently constructed gene deletion strains of the most highly dysregulated systems, and several of the YbeY-linked gene deletion strains exhibited defects in the ability of the bacteria to survive and replicate in primary murine macrophages. Taken together, these data establish a clear role for YbeY in the biology and virulence of Brucella; moreover, this work further illuminates the highly varied roles of this widely conserved endoribonuclease in bacteria.IMPORTANCEBrucella spp. are highly efficient bacterial pathogens of animals and humans, causing significant morbidity and economic loss worldwide, and relapse of disease often occurs following antibiotic treatment of human brucellosis. As such, novel therapeutic strategies to combat Brucella infections are needed. Ribonucleases in the brucellae are understudied, and these enzymes represent elements that may be potential targets for future treatment approaches. The present work demonstrates the importance of the YbeY endoribonuclease for cellular morphology, efficient control of mRNA levels, and virulence in B. abortus Overall, the results of this study advance our understanding of the critical roles of YbeY in the pathogenesis of the intracellular brucellae and expand our understanding of this highly conserved RNase.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Brucella abortus/patogenicidade , Brucelose/microbiologia , Endorribonucleases/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Endorribonucleases/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Virulência
7.
EBioMedicine ; 15: 36-47, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939424

RESUMO

Aberrant inflammation is a hallmark of inflammatory bowel disease (IBD) and colorectal cancer. IRAK-M is a critical negative regulator of TLR signaling and overzealous inflammation. Here we utilize data from human studies and Irak-m-/- mice to elucidate the role of IRAK-M in the modulation of gastrointestinal immune system homeostasis. In human patients, IRAK-M expression is up-regulated during IBD and colorectal cancer. Further functional studies in mice revealed that Irak-m-/- animals are protected against colitis and colitis associated tumorigenesis. Mechanistically, our data revealed that the gastrointestinal immune system of Irak-m-/- mice is highly efficient at eliminating microbial translocation following epithelial barrier damage. This attenuation of pathogenesis is associated with expanded areas of gastrointestinal associated lymphoid tissue (GALT), increased neutrophil migration, and enhanced T-cell recruitment. Further evaluation of Irak-m-/- mice revealed a splice variant that robustly activates NF-κB signaling. Together, these data identify IRAK-M as a potential target for future therapeutic intervention.


Assuntos
Imunidade nas Mucosas , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Processamento Alternativo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Colite/complicações , Colite/genética , Colite/imunologia , Colite/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral
8.
Mol Microbiol ; 98(2): 318-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175079

RESUMO

Small RNAs are principal elements of bacterial gene regulation and physiology. Two small RNAs in Brucella abortus, AbcR1 and AbcR2, are required for wild-type virulence. Examination of the abcR loci revealed the presence of a gene encoding a LysR-type transcriptional regulator flanking abcR2 on chromosome 1. Deletion of this lysR gene (bab1_1517) resulted in the complete loss of abcR2 expression while no difference in abcR1 expression was observed. The B. abortus bab1_1517 mutant strain was significantly attenuated in macrophages and mice, and bab1_1517 was subsequently named vtlR for virulence-associated transcriptional LysR-family regulator. Microarray analysis revealed three additional genes encoding small hypothetical proteins also under the control of VtlR. Electrophoretic mobility shift assays demonstrated that VtlR binds directly to the promoter regions of abcR2 and the three hypothetical protein-encoding genes, and DNase I footprint analysis identified the specific nucleotide sequence in these promoters that VtlR binds to and drives gene expression. Strikingly, orthologs of VtlR are encoded in a wide range of host-associated α-proteobacteria, and it is likely that the VtlR genetic system represents a common regulatory circuit critical for host-bacterium interactions.


Assuntos
Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Brucella abortus/genética , Sequência Conservada/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Brucella abortus/patogenicidade , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Macrófagos/microbiologia , Camundongos , Análise em Microsséries , Regiões Promotoras Genéticas , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Virulência/genética
9.
Cell Host Microbe ; 14(2): 119-20, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23954150

RESUMO

Studies described by Eisele et al. (2013) and Xavier et al. (2013) in this issue of Cell Host & Microbe show that the bacterial pathogens Salmonella and Brucella exploit the increased levels of glucose present in alternatively activated macrophages to sustain chronic infections in experimentally infected mice.


Assuntos
Brucella abortus/fisiologia , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Ativação de Macrófagos , Macrófagos/microbiologia , Viabilidade Microbiana , PPAR delta/metabolismo , PPAR gama/metabolismo , Salmonella typhimurium/fisiologia , Animais
10.
J Bacteriol ; 194(18): 5065-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22821968

RESUMO

The organic hydroperoxide resistance protein Ohr has been identified in numerous bacteria where it functions in the detoxification of organic hydroperoxides, and expression of ohr is often regulated by a MarR-type regulator called OhrR. The genes annotated as BAB2_0350 and BAB2_0351 in the Brucella abortus 2308 genome sequence are predicted to encode OhrR and Ohr orthologs, respectively. Using isogenic ohr and ohrR mutants and lacZ promoter fusions, it was determined that Ohr contributes to resistance to organic hydroperoxide, but not hydrogen peroxide, in B. abortus 2308 and that OhrR represses the transcription of both ohr and ohrR in this strain. Moreover, electrophoretic mobility shift assays and DNase I footprinting revealed that OhrR binds directly to a specific region in the intergenic region between ohr and ohrR that shares extensive nucleotide sequence similarity with so-called "OhrR boxes" described in other bacteria. While Ohr plays a prominent role in protecting B. abortus 2308 from organic hydroperoxide stress in in vitro assays, this protein is not required for the wild-type virulence of this strain in cultured murine macrophages or experimentally infected mice.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/efeitos dos fármacos , Farmacorresistência Bacteriana , Peróxido de Hidrogênio/toxicidade , Compostos Orgânicos/toxicidade , Animais , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Sítios de Ligação , Brucella abortus/genética , Brucella abortus/metabolismo , Brucelose/microbiologia , Pegada de DNA , DNA Bacteriano/metabolismo , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Peróxido de Hidrogênio/metabolismo , Macrófagos/microbiologia , Camundongos , Compostos Orgânicos/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , beta-Galactosidase/análise , beta-Galactosidase/genética
11.
Mol Microbiol ; 85(2): 345-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22690807

RESUMO

Hfq is an RNA-binding protein that functions in post-transcriptional gene regulation by mediating interactions between mRNAs and small regulatory RNAs (sRNAs). Two proteins encoded by BAB1_1794 and BAB2_0612 are highly over-produced in a Brucella abortus hfq mutant compared with the parental strain, and recently, expression of orthologues of these proteins in Agrobacterium tumefaciens was shown to be regulated by two sRNAs, called AbcR1 and AbcR2. Orthologous sRNAs (likewise designated AbcR1 and AbcR2) have been identified in B. abortus 2308. In Brucella, abcR1 and abcR2 single mutants are not defective in their ability to survive in cultured murine macrophages, but an abcR1 abcR2 double mutant exhibits significant attenuation in macrophages. Additionally, the abcR1 abcR2 double mutant displays significant attenuation in a mouse model of chronic Brucella infection. Quantitative proteomics and microarray analyses revealed that the AbcR sRNAs predominantly regulate genes predicted to be involved in amino acid and polyamine transport and metabolism, and Northern blot analyses indicate that the AbcR sRNAs accelerate the degradation of the target mRNAs. In an Escherichia coli two-plasmid reporter system, overexpression of either AbcR1 or AbcR2 was sufficient for regulation of target mRNAs, indicating that the AbcR sRNAs from B. abortus 2308 perform redundant regulatory functions.


Assuntos
Brucella abortus/genética , Brucella abortus/patogenicidade , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Interferente Pequeno/genética , Fatores de Virulência/biossíntese , Animais , Proteínas de Bactérias/análise , Northern Blotting , Brucelose/microbiologia , Brucelose/patologia , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Macrófagos/microbiologia , Camundongos , Análise em Microsséries , Viabilidade Microbiana , Proteoma/análise , Virulência
12.
Med Microbiol Immunol ; 198(4): 221-38, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19830453

RESUMO

Brucella strains produce abortion and infertility in their natural hosts and a zoonotic disease in humans known as undulant fever. These bacteria do not produce classical virulence factors, and their capacity to successfully survive and replicate within a variety of host cells underlies their pathogenicity. Extensive replication of the brucellae in placental trophoblasts is associated with reproductive tract pathology in natural hosts, and prolonged persistence in macrophages leads to the chronic infections that are a hallmark of brucellosis in both natural hosts and humans. This review describes how Brucella strains have efficiently adapted to their intracellular lifestyle in the host.


Assuntos
Adaptação Fisiológica , Brucella/patogenicidade , Animais , Brucella/genética , Brucella/imunologia , Brucella/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Flagelos/imunologia , Flagelos/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/microbiologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fosfatidilcolinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trofoblastos/imunologia , Trofoblastos/microbiologia
13.
Mol Microbiol ; 64(5): 1319-31, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17542923

RESUMO

The molecular pathogenesis of infections caused by group A Streptococcus (GAS) is not fully understood. We recently reported that a recombinant protein derived from the collagen-like surface protein, Scl1, bound to the human collagen receptor, integrin alpha(2)beta(1). Here, we investigate whether the same Scl1 variant expressed by GAS cells interacts with the integrin alpha2beta(1) and affects the biological outcome of host-pathogen interactions. We demonstrate that GAS adherence and internalization involve direct interactions between surface expressed Scl1 and the alpha2beta(1) integrin, because (i) both adherence and internalization of the scl1-inactivated mutant were significantly decreased, and were restored by in-trans complementation of Scl1 expression, (ii) GAS internalization was reduced by pre-treatment of HEp-2 cells with anti-alpha2 integrin-subunit antibody and type I collagen, (iii) recombinant alpha2-I domain bound the wild-type GAS cells and (iv) internalization of wild-type cells was significantly increased in C2C12 cells expressing the alpha2beta(1) integrin as the only collagen-binding integrin. Next, we determined that internalized GAS re-emerges from epithelial cells into the extracellular environment. Taken together, our data describe a new molecular mechanism used by GAS involving the direct interaction between Scl1 and integrins, which increases the overall capability of the pathogen to survive and re-emerge.


Assuntos
Proteínas de Bactérias/metabolismo , Colágeno/metabolismo , Integrina alfa2beta1/metabolismo , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Colágeno/genética , Contagem de Colônia Microbiana , Humanos , Integrina alfa2beta1/química , Ligação Proteica , Estrutura Terciária de Proteína , Streptococcus pyogenes/crescimento & desenvolvimento
14.
Appl Microbiol Biotechnol ; 72(1): 109-115, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16552563

RESUMO

Collagen triple helix, composed of the repeating Gly-Xaa-Yaa (GXY) sequence, is a structural element found in all multicellular animals and also in some prokaryotes. Long GXY polymers are highly regarded components used in food, cosmetic, biomedical, and pharmaceutical industries. In this study, we explore a new concept for the production of recombinant GXY polymers which are based on the sequence of "prokaryotic collagens", the streptococcal collagen-like proteins Scl1 and Scl2. Analysis of 50 Scl variants identified the amino acid distribution and GXY-repeat usage that are involved in the stabilization of the triple helix in Scls. Using circular dichroism spectroscopy and electron microscopy, we show that significantly different recombinant rScl polypeptides form stable, unhydroxylated homotrimeric triple helices that can be produced both intra- and extracellularly in the Escherichia coli. These rScl constructs containing 20 to 129 GXY repeats had mid-point melting temperatures between 32 and 39 degrees C. Altogether, Scl-derived collagens, which are different from the mammalian collagens, can form stable triple helices under physiological conditions and can be used for the production of recombinant GXY polymers with a wide variety of potential applications.


Assuntos
Proteínas de Bactérias/metabolismo , Biopolímeros/biossíntese , Colágeno/biossíntese , Proteínas de Bactérias/genética , Dicroísmo Circular , Colágeno/genética , Colágeno/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microscopia Eletrônica de Transmissão , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/ultraestrutura , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA