Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 32(7): 813-818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38605124

RESUMO

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 20 , Hiperinsulinismo Congênito , Fator 3-beta Nuclear de Hepatócito , Humanos , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/patologia , Cromossomos Humanos Par 20/genética , Feminino , Masculino , Sequências Reguladoras de Ácido Nucleico
2.
Hum Mol Genet ; 33(10): 894-904, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433330

RESUMO

Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and ß-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 4 Nuclear de Hepatócito , Regiões Promotoras Genéticas , Ativação Transcricional , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Ativação Transcricional/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Variação Genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular
3.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934770

RESUMO

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Assuntos
Cinesinas , Osteogênese Imperfeita , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Regulação para Baixo , Cinesinas/genética , Cinesinas/metabolismo , Células NIH 3T3 , Proteômica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
Brain ; 146(9): 3885-3897, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37006128

RESUMO

Dravet syndrome is an archetypal rare severe epilepsy, considered 'monogenic', typically caused by loss-of-function SCN1A variants. Despite a recognizable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. The polygenic risk score for intelligence was lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Epilepsia/genética , Fenótipo , Genômica
5.
Hum Mol Genet ; 32(4): 580-594, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36067010

RESUMO

DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.


Assuntos
Epilepsias Parciais , Síndromes Epilépticas , Megalencefalia , Polimicrogiria , Humanos , Mutação , Proteínas Ativadoras de GTPase/genética , Serina-Treonina Quinases TOR/genética , Epilepsias Parciais/genética , Megalencefalia/genética
6.
Eur J Med Genet ; 65(8): 104541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35718083

RESUMO

Sedaghatian type spondylometaphyseal dysplasia (SSMD) is a rare skeletal dysplasia with only 24 reported cases to date. Despite the limited literature available, evidence suggests this is a multi-system disorder, with neurological and cardiovascular abnormalities reported in addition to the skeletal features. We report a new family with two affected siblings and detailed phenotypic description of the affected proband. Diagnosis in the neonatal period led to retrospective genetic diagnosis of a previous affected pregnancy that was terminated due to severe ventriculomegaly. We suggest that a diagnosis of SSMD should be considered when shortened long bones are found in combination with significant brain abnormalities.


Assuntos
Osteocondrodisplasias , Irmãos , Humanos , Recém-Nascido , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Radiografia , Estudos Retrospectivos
7.
Eur J Hum Genet ; 30(8): 960-966, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590056

RESUMO

DNA polymerase δ is one of the three main enzymes responsible for DNA replication. POLD1 heterozygous missense variants in the exonuclease domain result in a cancer predisposition phenotype. In contrast, heterozygous variants in POLD1 polymerase domain have more recently been shown to be the underlying basis of the distinct autosomal dominant multisystem lipodystrophy disorder, MDPL (mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome OMIM # 615381), most commonly a recurrent in-frame deletion of serine at position 604, accounting for 18 of the 21 reported cases of this condition. One patient with an unusually severe phenotype has been reported, caused by a de novo c. 3209 T > A, (p.(Ile1070Asn)) variant in the highly conserved CysB motif in the C-terminal of the POLD1 protein. This region has recently been shown to bind an iron-sulphur cluster of the 4Fe-4S type. This report concerns a novel de novo missense variant in the CysB region, c.3219 G > C, (p.(Ser1073Arg)) in a male child with a milder phenotype. Using in silico analysis in the context of the recently published structure of human Polymerase δ holoenzyme, we compared these and other variants which lie in close proximity but result in differing degrees of severity and varying features. We hypothesise that the c.3219 G > C, (p.(Ser1073Arg)) substitution likely causes reduced binding of the iron-sulphur cluster without significant disruption of protein structure, while the previously reported c.3209 T > A (p.(Ile1070Asn)) variant likely has a more profound impact on structure and folding in the region. Our analysis supports a central role for the CysB region in regulating POLD1 activity in health and disease.


Assuntos
DNA Polimerase III , Proteínas Ferro-Enxofre , Lipodistrofia , Criança , DNA Polimerase III/genética , Humanos , Proteínas Ferro-Enxofre/genética , Lipodistrofia/genética , Masculino , Mutação de Sentido Incorreto , Fenótipo , Síndrome
8.
Ophthalmol Retina ; 6(1): 65-79, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34257060

RESUMO

PURPOSE: To report the retinal phenotype and the associated genetic and systemic findings in patients with mitochondrial disease. DESIGN: Retrospective case series. PARTICIPANTS: Twenty-three patients with retinopathy and mitochondrial disease, including chronic progressive external ophthalmoplegia (CPEO), maternally inherited diabetes and deafness (MIDD), mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Kearns-Sayre syndrome, neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome, and other systemic manifestations. METHODS: Review of case notes, retinal imaging, electrophysiologic assessment, molecular genetic testing including protein modeling, and histologic analysis of muscle biopsy. MAIN OUTCOME MEASURES: Phenotypic characteristics of mitochondrial retinopathy. RESULTS: Genetic testing identified sporadic large-scale mitochondrial DNA deletions and variants in MT-TL1, MT-ATP6, MT-TK, MT-RNR1, or RRM2B. Based on retinal imaging, 3 phenotypes could be differentiated: type 1 with mild, focal pigmentary abnormalities; type 2 characterized by multifocal white-yellowish subretinal deposits and pigment changes limited to the posterior pole; and type 3 with widespread granular pigment alterations. Advanced type 2 and 3 retinopathy presented with chorioretinal atrophy that typically started in the peripapillary and paracentral areas with foveal sparing. Two patients exhibited a different phenotype: 1 revealed an occult retinopathy, and the patient with RRM2B-associated retinopathy showed no foveal sparing, no severe peripapillary involvement, and substantial photoreceptor atrophy before loss of the retinal pigment epithelium. Two patients with type 1 disease showed additional characteristics of mild macular telangiectasia type 2. Patients with type 1 and mild type 2 or 3 disease demonstrated good visual acuity and no symptoms associated with the retinopathy. In contrast, patients with advanced type 2 or 3 disease often reported vision problems in dim light conditions, reduced visual acuity, or both. Short-wavelength autofluorescence usually revealed a distinct pattern, and near-infrared autofluorescence may be severely reduced in type 3 disease. The retinal phenotype was key to suspecting mitochondrial disease in 11 patients, whereas 12 patients were diagnosed before retinal examination. CONCLUSIONS: Different types of mitochondrial retinopathy show characteristic features. Even in absence of visual symptoms, their recognition may facilitate the often challenging and delayed diagnosis of mitochondrial disease, in particular in patients with mild or nebulous multisystem disease.


Assuntos
Angiofluoresceinografia/métodos , Doenças Mitocondriais/diagnóstico , Degeneração Retiniana/diagnóstico , Epitélio Pigmentado da Retina/patologia , Acuidade Visual , Adolescente , Adulto , Idoso , Eletrorretinografia , Feminino , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
9.
J Endocr Soc ; 3(12): 2258-2275, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31737856

RESUMO

Despite the rapid expansion in recent years of databases reporting either benign or pathogenic genetic variations, the interpretation of novel missense variants remains challenging, particularly for clinical or genetic testing laboratories where functional analysis is often unfeasible. Previous studies have shown that thermodynamic analysis of protein structure in silico can discriminate between groups of benign and pathogenic missense variants. However, although structures exist for many human disease‒associated proteins, such analysis remains largely unexploited in clinical laboratories. Here, we analyzed the predicted effect of 338 known missense variants on the structure of menin, the MEN1 gene product. Results provided strong discrimination between pathogenic and benign variants, with a threshold of >4 kcal/mol for the predicted change in stability, providing a strong indicator of pathogenicity. Subsequent analysis of seven novel missense variants identified during clinical testing of patients with MEN1 showed that all seven were predicted to destabilize menin by >4 kcal/mol. We conclude that structural analysis provides a useful tool in understanding the effect of missense variants in MEN1 and that integration of proteomic with genomic data could potentially contribute to the classification of novel variants in this disease.

10.
Hum Mol Genet ; 28(21): 3543-3551, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423530

RESUMO

We report the case of a consanguineous couple who lost four pregnancies associated with skeletal dysplasia. Radiological examination of one fetus was inconclusive. Parental exome sequencing showed that both parents were heterozygous for a novel missense variant, p.(Pro133Leu), in the SLC35D1 gene encoding a nucleotide sugar transporter. The affected fetus was homozygous for the variant. The radiological features were reviewed, and being similar, but atypical, the phenotype was classified as a 'Schneckenbecken-like dysplasia.' The effect of the missense change was assessed using protein modelling techniques and indicated alterations in the mouth of the solute channel. A detailed biochemical investigation of SLC35D1 transport function and that of the missense variant p.(Pro133Leu) revealed that SLC35D1 acts as a general UDP-sugar transporter and that the p.(Pro133Leu) mutation resulted in a significant decrease in transport activity. The reduced transport activity observed for p.(Pro133Leu) was contrasted with in vitro activity for SLC35D1 p.(Thr65Pro), the loss-of-function mutation was associated with Schneckenbecken dysplasia. The functional classification of SLC35D1 as a general nucleotide sugar transporter of the endoplasmic reticulum suggests an expanded role for this transporter beyond chondroitin sulfate biosynthesis to a variety of important glycosylation reactions occurring in the endoplasmic reticulum.


Assuntos
Doenças Fetais/genética , Proteínas de Transporte de Monossacarídeos/genética , Osteocondrodisplasias/genética , Alelos , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Heterozigoto , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação de Sentido Incorreto , Osteocondrodisplasias/embriologia , Osteocondrodisplasias/metabolismo
11.
Am J Med Genet A ; 176(9): 1950-1955, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30144375

RESUMO

Transient receptor potential vanilloid 6 (TRPV6) functions in tetramer form for calcium transport. Until now, TRPV6 has not been linked with skeletal development disorders. An infant with antenatal onset thoracic insufficiency required significant ventilatory support. Skeletal survey showed generalized marked undermineralization, hypoplastic fractured ribs, metaphyseal fractures, and extensive periosteal reaction along femoral, tibial, and humeral diaphyses. Parathyroid hormone (PTH) elevation (53.4-101 pmol/L) initially suggested PTH signaling disorders. Progressively, biochemical normalization with radiological mineralization suggested recovery from in utero pathophysiology. Genomic testing was undertaken and in silico protein modeling of variants. No abnormalities in antenatal CGH array or UPD14 testing. Postnatal molecular genetic analysis found no causative variants in CASR, GNA11, APS21, or a 336 gene skeletal dysplasia panel investigated by whole exome sequencing. Trio exome analysis identified compound heterozygous TRPV6 likely pathogenic variants: novel maternally inherited missense variant, c.1978G > C p.(Gly660Arg), and paternally inherited nonsense variant, c.1528C > T p.(Arg510Ter), confirming recessive inheritance. p.(Gly660Arg) generates a large side chain protruding from the C-terminal hook into the interface with the adjacent TRPV6 subunit. In silico protein modeling suggests steric clashes between interface residues, decreased C-terminal hook, and TRPV6 tetramer stability. The p.(Gly660Arg) variant is predicted to result in profound loss of TRPV6 activity. This first case of a novel dysplasia features severe but improving perinatal abnormalities. The TRPV6 compound heterozygous variants appear likely to interfere with fetoplacental calcium transfer crucial for in utero skeletal development. Astute clinical interpretation of evolving perinatal abnormalities remains valuable in complex calcium and bone pathophysiology and informs exome sequencing interpretation.


Assuntos
Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Canais de Cálcio/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Heterozigoto , Canais de Cátion TRPV/genética , Alelos , Canais de Cálcio/química , Hibridização Genômica Comparativa , Exoma , Feminino , Estudos de Associação Genética/métodos , Humanos , Modelos Moleculares , Placenta/metabolismo , Gravidez , Conformação Proteica , Radiografia , Índice de Gravidade de Doença , Relação Estrutura-Atividade , Canais de Cátion TRPV/química , Sequenciamento do Exoma
12.
Proc Natl Acad Sci U S A ; 115(5): 1027-1032, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339498

RESUMO

The ß-cell-enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing MAFA variants have been previously described. We investigated a large pedigree with autosomal dominant inheritance of diabetes mellitus or insulinomatosis, an adult-onset condition of recurrent hyperinsulinemic hypoglycemia caused by multiple insulin-secreting neuroendocrine tumors of the pancreas. Using exome sequencing, we identified a missense MAFA mutation (p.Ser64Phe, c.191C>T) segregating with both phenotypes of insulinomatosis and diabetes. This mutation was also found in a second unrelated family with the same clinical phenotype, while no germline or somatic MAFA mutations were identified in nine patients with sporadic insulinomatosis. In the two families, insulinomatosis presented more frequently in females (eight females/two males) and diabetes more often in males (12 males/four females). Four patients from the index family, including two homozygotes, had a history of congenital cataract and/or glaucoma. The p.Ser64Phe mutation was found to impair phosphorylation within the transactivation domain of MAFA and profoundly increased MAFA protein stability under both high and low glucose concentrations in ß-cell lines. In addition, the transactivation potential of p.Ser64Phe MAFA in ß-cell lines was enhanced compared with wild-type MAFA. In summary, the p.Ser64Phe missense MAFA mutation leads to familial insulinomatosis or diabetes by impacting MAFA protein stability and transactivation ability. The human phenotypes associated with the p.Ser64Phe MAFA missense mutation reflect both the oncogenic capacity of MAFA and its key role in islet ß-cell activity.


Assuntos
Diabetes Mellitus/genética , Hiperinsulinismo/genética , Insulinoma/genética , Fatores de Transcrição Maf Maior/genética , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Feminino , Genes Dominantes , Humanos , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Insulinoma/metabolismo , Insulinoma/patologia , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Proteínas Mutantes/metabolismo , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Linhagem , Estabilidade Proteica , Ativação Transcricional , Sequenciamento do Exoma
14.
Metabolism ; 71: 213-225, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28521875

RESUMO

BACKGROUND: Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL) is an autosomal dominant systemic disorder characterized by prominent loss of subcutaneous fat, a characteristic facial appearance and metabolic abnormalities. This syndrome is caused by heterozygous de novo mutations in the POLD1 gene. To date, 19 patients with MDPL have been reported in the literature and among them 14 patients have been characterized at the molecular level. Twelve unrelated patients carried a recurrent in-frame deletion of a single codon (p.Ser605del) and two other patients carried a novel heterozygous mutation in exon 13 (p.Arg507Cys). Additionally and interestingly, germline mutations of the same gene have been involved in familial polyposis and colorectal cancer (CRC) predisposition. PATIENTS AND METHODS: We describe a male and a female patient with MDPL respectively affected with mild and severe phenotypes. Both of them showed mandibular hypoplasia, a beaked nose with bird-like facies, prominent eyes, a small mouth, growth retardation, muscle and skin atrophy, but the female patient showed such a severe and early phenotype that a first working diagnosis of Hutchinson-Gilford Progeria was made. The exploration was performed by direct sequencing of POLD1 gene exon 15 in the male patient with a classical MDPL phenotype and by whole exome sequencing in the female patient and her unaffected parents. RESULTS: Exome sequencing identified in the latter patient a de novo heterozygous undescribed mutation in the POLD1 gene (NM_002691.3: c.3209T>A), predicted to cause the missense change p.Ile1070Asn in the ZnF2 (Zinc Finger 2) domain of the protein. This mutation was not reported in the 1000 Genome Project, dbSNP and Exome sequencing databases. Furthermore, the Isoleucine1070 residue of POLD1 is highly conserved among various species, suggesting that this substitution may cause a major impairment of POLD1 activity. For the second patient, affected with a typical MDPL phenotype, direct sequencing of POLD1 exon 15 revealed the recurrent in-frame deletion (c.1812_1814del, p.S605del). CONCLUSION: Our work highlights that mutations in different POLD1 domains can lead to phenotypic variability, ranging from dominantly inherited cancer predisposition syndromes, to mild MDPL phenotypes without lifespan reduction, to very severe MDPL syndromes with major premature aging features. These results also suggest that POLD1 gene testing should be considered in patients presenting with severe progeroid features.


Assuntos
DNA Polimerase III/genética , Surdez/genética , Exoma/genética , Lipodistrofia/genética , Mutação , Progéria/genética , Idade de Início , Criança , Surdez/patologia , Surdez/psicologia , Éxons/genética , Feminino , Deleção de Genes , Humanos , Lipodistrofia/patologia , Lipodistrofia/psicologia , Masculino , Fenótipo , Progéria/patologia , Progéria/psicologia , Análise de Sequência de Proteína , Síndrome , Adulto Jovem
15.
J Am Soc Nephrol ; 28(8): 2529-2539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28373276

RESUMO

Hyperinsulinemic hypoglycemia (HI) and congenital polycystic kidney disease (PKD) are rare, genetically heterogeneous disorders. The co-occurrence of these disorders (HIPKD) in 17 children from 11 unrelated families suggested an unrecognized genetic disorder. Whole-genome linkage analysis in five informative families identified a single significant locus on chromosome 16p13.2 (logarithm of odds score 6.5). Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, we found in all patients a promoter mutation (c.-167G>T) in the phosphomannomutase 2 gene (PMM2), either homozygous or in trans with PMM2 coding mutations. PMM2 encodes a key enzyme in N-glycosylation. Abnormal glycosylation has been associated with PKD, and we found that deglycosylation in cultured pancreatic ß cells altered insulin secretion. Recessive coding mutations in PMM2 cause congenital disorder of glycosylation type 1a (CDG1A), a devastating multisystem disorder with prominent neurologic involvement. Yet our patients did not exhibit the typical clinical or diagnostic features of CDG1A. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2 We propose that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. Our findings extend the spectrum of genetic causes for both HI and PKD and provide insights into gene regulation and PMM2 pleiotropy.


Assuntos
Hiperinsulinismo Congênito/complicações , Hiperinsulinismo Congênito/genética , Mutação , Fosfotransferases (Fosfomutases)/genética , Doenças Renais Policísticas/complicações , Doenças Renais Policísticas/genética , Regiões Promotoras Genéticas/genética , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
16.
Acta Neuropathol Commun ; 4(1): 56, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245663

RESUMO

Non-syndromic pituitary gigantism can result from AIP mutations or the recently identified Xq26.3 microduplication causing X-linked acrogigantism (XLAG). Within Xq26.3, GPR101 is believed to be the causative gene, and the c.924G > C (p.E308D) variant in this orphan G protein-coupled receptor has been suggested to play a role in the pathogenesis of acromegaly.We studied 153 patients (58 females and 95 males) with pituitary gigantism. AIP mutation-negative cases were screened for GPR101 duplication through copy number variation droplet digital PCR and high-density aCGH. The genetic, clinical and histopathological features of XLAG patients were studied in detail. 395 peripheral blood and 193 pituitary tumor DNA samples from acromegaly patients were tested for GPR101 variants.We identified 12 patients (10 females and 2 males; 7.8 %) with XLAG. In one subject, the duplicated region only contained GPR101, but not the other three genes in found to be duplicated in the previously reported patients, defining a new smallest region of overlap of duplications. While females presented with germline mutations, the two male patients harbored the mutation in a mosaic state. Nine patients had pituitary adenomas, while three had hyperplasia. The comparison of the features of XLAG, AIP-positive and GPR101&AIP-negative patients revealed significant differences in sex distribution, age at onset, height, prolactin co-secretion and histological features. The pathological features of XLAG-related adenomas were remarkably similar. These tumors had a sinusoidal and lobular architecture. Sparsely and densely granulated somatotrophs were admixed with lactotrophs; follicle-like structures and calcifications were commonly observed. Patients with sporadic of familial acromegaly did not have an increased prevalence of the c.924G > C (p.E308D) GPR101 variant compared to public databases.In conclusion, XLAG can result from germline or somatic duplication of GPR101. Duplication of GPR101 alone is sufficient for the development of XLAG, implicating it as the causative gene within the Xq26.3 region. The pathological features of XLAG-associated pituitary adenomas are typical and, together with the clinical phenotype, should prompt genetic testing.


Assuntos
Duplicação Gênica , Gigantismo/genética , Receptores Acoplados a Proteínas G/genética , Acromegalia/complicações , Acromegalia/genética , Acromegalia/patologia , Adenoma/complicações , Adenoma/genética , Adenoma/patologia , Adolescente , Criança , Pré-Escolar , Feminino , Mutação em Linhagem Germinativa , Gigantismo/complicações , Gigantismo/patologia , Gigantismo/terapia , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Resultado do Tratamento , Adulto Jovem
17.
J Clin Endocrinol Metab ; 101(5): 1927-30, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26982009

RESUMO

CONTEXT: Recent reports have proposed that sporadic or familial germline Xq26.3 microduplications involving the GPR101 gene are associated with early-onset X-linked acrogigantism (XLAG) with a female preponderance. CASE DESCRIPTION: A 4-year-old boy presented with rapid growth over the previous 2 years. He complained of sporadic headaches and had coarse facial features. His height Z-score was +4.89, and weight Z-score was +5.57. Laboratory testing revealed elevated serum prolactin (185 µg/L; normal, <18 µg/L), IGF-1 (745 µg/L; normal, 64-369 µg/L), and fasting GH > 35.0 µg/L. Magnetic resonance imaging demonstrated a homogenous bulky pituitary gland (18 × 15 × 13 mm) without obvious adenoma. A pituitary biopsy showed hyperplastic pituitary tissue with enlarged cords of GH and prolactin cells. Germline PRKAR1A, MEN1, AIP, DICER1, CDKN1B, and somatic GNAS mutations were negative. Medical management was challenging until institution of continuous sc infusion of short-acting octreotide combined with sc pegvisomant and oral cabergoline. The patient remains well controlled with minimal side effects 7 years after presentation. His phenotype suggested XLAG, but his peripheral leukocyte-, saliva-, and buccal cell-derived DNA tested negative for microduplication in Xq26.3 or GPR101. However, DNA isolated from the pituitary tissue and forearm skin showed duplicated dosage of GPR101, suggesting that he is mosaic for this genetic abnormality. CONCLUSIONS: Our patient is the first to be described with somatic microduplication leading to typical XLAG phenotype. This patient demonstrates that a negative test for Xq26.3 microduplication or GPR101 duplication on peripheral blood DNA does not exclude the diagnosis of XLAG because it can result from a mosaic mutation affecting the pituitary.


Assuntos
Duplicação Gênica , Gigantismo/genética , Hipófise/diagnóstico por imagem , Receptores Acoplados a Proteínas G/genética , Cabergolina , Pré-Escolar , Ergolinas/uso terapêutico , Gigantismo/diagnóstico por imagem , Gigantismo/tratamento farmacológico , Hormônio do Crescimento Humano/análogos & derivados , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Masculino
18.
Sci Rep ; 6: 21746, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883533

RESUMO

The long-read sequencers from Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT) offer the opportunity to phase mutations multiple kilobases apart directly from sequencing reads. In this study, we used long-range PCR with ONT and PacBio sequencing to phase two variants 9 kb apart in the RET gene. We also re-analysed data from a recent paper which had apparently successfully used ONT to phase clinically important haplotypes at the CYP2D6 and HLA loci. From these analyses, we demonstrate PCR-chimera formation during PCR amplification and reference alignment bias are pitfalls that need to be considered when attempting to phase variants using amplicon-based long-read sequencing technologies. These methodological pitfalls need to be avoided if the opportunities provided by long-read sequencers are to be fully exploited.


Assuntos
Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/normas , Análise de Sequência de DNA/métodos , Citocromo P-450 CYP2D6/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Mutação , Proteínas Proto-Oncogênicas c-ret/genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/normas
19.
Clin Endocrinol (Oxf) ; 84(5): 715-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26708403

RESUMO

BACKGROUND: Mucosal neuromas, thickened corneal nerves and marfanoid body habitus are characteristic phenotypic features of multiple endocrine neoplasia type 2B (MEN2B) and often provide an early clue to the diagnosis of the syndrome. Rarely, patients present with typical physical features of MEN2B but without associated endocrinopathies (medullary thyroid carcinoma or pheochromocytoma) or a RET gene mutation; this clinical presentation is thought to represent a distinct condition termed 'pure mucosal neuroma syndrome'. METHODS: Exome sequencing was performed in two unrelated probands with mucosal neuromas, thickened corneal nerves and marfanoid body habitus, but no MEN2B-associated endocrinopathy or RET gene mutation. Sanger sequencing was performed to confirm mutations detected by exome sequencing and to test in family members and 3 additional unrelated index patients with mucosal neuromas or thickened corneal nerves. RESULTS: A heterozygous SOS1 gene frameshift mutation (c.3266dup or c.3248dup) was identified in each proband. Sanger sequencing showed that proband 1 inherited the c.3266dup mutation from his affected mother, while the c.3248dup mutation had arisen de novo in proband 2. Sanger sequencing also identified one further novel SOS1 mutation (c.3254dup) in one of the 3 additional index patients. CONCLUSION: Our results demonstrate the existence of pure mucosal neuroma syndrome as a clinical entity distinct from MEN2B that can now be diagnosed by genetic testing.


Assuntos
Mutação da Fase de Leitura , Predisposição Genética para Doença/genética , Mucosa Bucal/metabolismo , Neoplasias Bucais/genética , Neuroma/genética , Proteína SOS1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Diagnóstico Diferencial , Exoma/genética , Saúde da Família , Feminino , Heterozigoto , Humanos , Masculino , Mucosa Bucal/patologia , Neoplasias Bucais/diagnóstico , Neoplasia Endócrina Múltipla Tipo 2b/diagnóstico , Neoplasia Endócrina Múltipla Tipo 2b/genética , Neuroma/diagnóstico , Linhagem , Fenótipo , Análise de Sequência de DNA/métodos , Síndrome
20.
Am J Med Genet A ; 164A(4): 907-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24459067

RESUMO

We report on a family in which four males over three generations are affected with X-linked recessive developmental delay, learning difficulties, severe behavioral difficulties and mild dysmorphic features. Plasma sterol analysis in three of the four affected males demonstrated increased concentrations of 8-dehydrocholesterol (8-DHC) and cholest-8(9)-enol. All four affected males had a novel hemizygous missense mutation, p.W47R (c.139T>C), in EBP. Functional studies showed raised levels of cholest-8(9)-enol in patient's cultured fibroblast cells, which were suppressed when the cells were incubated with simvastatin. EBP encodes 3ß-hydroxysteroid-delta8, delta7-isomerase, a key enzyme involved in the cholesterol biosynthesis pathway. Mutations in EBP have previously been associated with Conradi-Hunermann-Happle syndrome (CHH), an X-linked dominant disorder characterized by skeletal dysplasia, skin, and ocular abnormalities, which is usually lethal in males. Four previous reports describe X-linked recessive multiple anomaly syndromes associated with non-mosaic EBP mutations in males, two at the same amino acid position, p.W47C. This phenotype has previously been described as "MEND" syndrome (male EBP disorder with neurological defects). The family reported herein represent either a novel phenotype, or an expansion of the MEND phenotype, characterized by extreme behavioral difficulties and a scarcity of structural anomalies. Simvastatin therapy is being evaluated in two males from this family.


Assuntos
Deficiências do Desenvolvimento/genética , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Transtornos Mentais/genética , Mutação , Esteroide Isomerases/genética , Adulto , Criança , Colestadienóis/sangue , Deficiências do Desenvolvimento/sangue , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Humanos , Lactente , Masculino , Transtornos Mentais/sangue , Linhagem , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA