Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000891

RESUMO

Both homeologous exchanges and homeologous expression bias are generally found in most allopolyploid species. Whether homeologous exchanges and homeologous expression bias differ between repeated allopolyploid speciation events from the same progenitor species remains unknown. Here, we detected a third independent and recent allotetraploid origin for the model grass Brachypodium hybridum. Our homeologous exchange with replacement analyses indicated the absence of significant homeologous exchanges in any of the three types of wild allotetraploids, supporting the integrity of their progenitor subgenomes and the immediate creation of the amphidiploids. Further homeologous expression bias tests did not uncover significant subgenomic dominance in different tissues and conditions of the allotetraploids. This suggests a balanced expression of homeologs under similar or dissimilar ecological conditions in their natural habitats. We observed that the density of transposons around genes was not associated with the initial establishment of subgenome dominance; rather, this feature is inherited from the progenitor genome. We found that drought response genes were highly induced in the two subgenomes, likely contributing to the local adaptation of this species to arid habitats in the third allotetraploid event. These findings provide evidence for the consistency of subgenomic stability of parental genomes across multiple allopolyploidization events that led to the same species at different periods. Our study emphasizes the importance of selecting closely related progenitor species genomes to accurately assess homeologous exchange with replacement in allopolyploids, thereby avoiding the detection of false homeologous exchanges when using less related progenitor species genomes.


Assuntos
Brachypodium , Brachypodium/genética , Genoma de Planta , Poliploidia
2.
Ann Bot ; 131(4): 635-654, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36681900

RESUMO

BACKGROUND AND AIMS: Among the numerous pantropical species of the yam genus, Dioscorea, only a small group occurs in the Mediterranean basin, including two narrow Pyrenean endemics (Borderea clade) and two Mediterranean-wide species (D. communis and D. orientalis, Tamus clade). However, several currently unrecognized species and infraspecific taxa have been described in the Tamus clade due to significant morphological variation associated with D. communis. Our overarching aim was to investigate taxon delimitation in the Tamus clade using an integrative approach combining phylogenomic, spatial and morphological data. METHODS: We analysed 76 herbarium samples using Hyb-Seq genomic capture to sequence 260 low-copy nuclear genes and plastomes, together with morphometric and environmental modelling approaches. KEY RESULTS: Phylogenomic reconstructions confirmed that the two previously accepted species of the Tamus clade, D. communis and D. orientalis, are monophyletic and form sister clades. Three subclades showing distinctive geographic patterns were identified within D. communis. These subclades were also identifiable from morphometric and climatic data, and introgression patterns were inferred between subclades in the eastern part of the distribution of D. communis. CONCLUSIONS: We propose a taxonomy that maintains D. orientalis, endemic to the eastern Mediterranean region, and splits D. communis sensu lato into three species: D. edulis, endemic to Macaronesia (Canary Islands and Madeira); D. cretica, endemic to the eastern Mediterranean region; and D. communis sensu stricto, widespread across western and central Europe. Introgression inferred between D. communis s.s. and D. cretica is likely to be explained by their relatively recent speciation at the end of the Miocene, disjunct isolation in eastern and western Mediterranean glacial refugia and a subsequent westward recolonization of D. communis s.s. Our study shows that the use of integrated genomic, spatial and morphological approaches allows a more robust definition of species boundaries and the identification of species that previous systematic studies failed to uncover.


Assuntos
Dioscorea , Dioscoreaceae , Tamus , Dioscorea/genética , Filogenia , Genômica , Filogeografia
3.
Genetics ; 223(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36218464

RESUMO

The "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession "Bhyb26." We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species' similarity in transposable element load may account for the subtlety of the observed genome dominance.


Assuntos
Brachypodium , Brachypodium/genética , Elementos de DNA Transponíveis , Diploide , Genômica , Poliploidia , Genoma de Planta , Evolução Molecular
4.
Plants (Basel) ; 11(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079685

RESUMO

Allopolyploidy is considered a driver of diversity in subtribe Loliinae. We investigate the evolution and systematics of the poorly studied Mesoamerican and South American polyploid broad-leaved Festuca L. species of uncertain origin and unclear taxonomy. A taxonomic study of seven diagnostic morphological traits was conducted on a representation of 22 species. Phylogenomic analyses were performed on a representation of these supraspecific taxa and all other Loliinae lineages using separate data from the entire plastome, nuclear rDNA 45S and 5S genes, and repetitive DNA elements. F. subgen. Mallopetalon falls within the fine-leaved (FL) Loliinae clade, whereas the remaining taxa are nested within the broad-leaved (BL) Loliinae clade forming two separate Mexico-Central-South American (MCSAI, MCSAII) lineages. MCSAI includes representatives of F. sect. Glabricarpae and F. subgen. Asperifolia plus F. superba, and MCSAII of F. subgen. Erosiflorae and F. sect. Ruprechtia plus F. argentina. MCSAII likely had a BL Leucopoa paternal ancestor, MCSAI and MCSAII a BL Meso-South American maternal ancestor, and Mallopetalon FL, American I-II ancestors. Plastome vs. nuclear topological discordances corroborated the hybrid allopolyploid origins of these taxa, some of which probably originated from Northern Hemisphere ancestors. The observed data indicate rapid reticulate radiations in the Central-South American subcontinent. Our systematic study supports the reclassification of some studied taxa in different supraspecific Festuca ranks.

5.
Front Plant Sci ; 13: 901733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845705

RESUMO

The repeatome is composed of diverse families of repetitive DNA that keep signatures on the historical events that shaped the evolution of their hosting species. The cold seasonal Loliinae subtribe includes worldwide distributed taxa, some of which are the most important forage and lawn species (fescues and ray-grasses). The Loliinae are prone to hybridization and polyploidization. It has been observed a striking two-fold difference in genome size between the broad-leaved (BL) and fine-leaved (FL) Loliinae diploids and a general trend of genome reduction of some high polyploids. We have used genome skimming data to uncover the composition, abundance, and potential phylogenetic signal of repetitive elements across 47 representatives of the main Loliinae lineages. Independent and comparative analyses of repetitive sequences and of 5S rDNA loci were performed for all taxa under study and for four evolutionary Loliinae groups [Loliinae, Broad-leaved (BL), Fine-leaved (FL), and Schedonorus lineages]. Our data showed that the proportion of the genome covered by the repeatome in the Loliinae species was relatively high (average ∼ 51.8%), ranging from high percentages in some diploids (68.7%) to low percentages in some high-polyploids (30.7%), and that changes in their genome sizes were likely caused by gains or losses in their repeat elements. Ty3-gypsy Retand and Ty1-copia Angela retrotransposons were the most frequent repeat families in the Loliinae although the relatively more conservative Angela repeats presented the highest correlation of repeat content with genome size variation and the highest phylogenetic signal of the whole repeatome. By contrast, Athila retrotransposons presented evidence of recent proliferations almost exclusively in the Lolium clade. The repeatome evolutionary networks showed an overall topological congruence with the nuclear 35S rDNA phylogeny and a geographic-based structure for some lineages. The evolution of the Loliinae repeatome suggests a plausible scenario of recurrent allopolyploidizations followed by diploidizations that generated the large genome sizes of BL diploids as well as large genomic rearrangements in highly hybridogenous lineages that caused massive repeatome and genome contractions in the Schedonorus and Aulaxyper polyploids. Our study has contributed to disentangling the impact of the repeatome dynamics on the genome diversification and evolution of the Loliinae grasses.

6.
Trends Plant Sci ; 27(10): 1002-1016, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644781

RESUMO

It has been 20 years since Brachypodium distachyon was suggested as a model grass species, but ongoing research now encompasses the entire genus. Extensive Brachypodium genome sequencing programmes have provided resources to explore the determinants and drivers of population diversity. This has been accompanied by cytomolecular studies to make Brachypodium a platform to investigate speciation, polyploidisation, perenniality, and various aspects of chromosome and interphase nucleus organisation. The value of Brachypodium as a functional genomic platform has been underscored by the identification of key genes for development, biotic and abiotic stress, and cell wall structure and function. While Brachypodium is relevant to the biofuel industry, its impact goes far beyond that as an intriguing model to study climate change and combinatorial stress.


Assuntos
Brachypodium , Biocombustíveis , Brachypodium/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Genômica
7.
Ann Hematol ; 101(7): 1567-1576, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525883

RESUMO

Despite advances in the understanding of the pathophysiology of cytomegalovirus (CMV) infection, it remains as one of the most common infectious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The aim of this study was to determine the genotype of cytokines and chemokines in donor and recipient and their association with CMV reactivation. Eighty-five patients receiving an allo-HSCT from an HLA-identical sibling donor were included in the study. Fifty genes were selected for their potential role in the pathogenesis of CMV infection. CMV DNAemia was evaluated until day 180 after allo-HSCT. CMV reactivation was observed in 51/85 (60%) patients. Of the 213 genetic variants selected, 11 polymorphisms in 7 different genes (CXCL12, IL12A, KIR3DL1, TGFB2, TNF, IL1RN, and CD48) were associated with development or protection from CMV reactivation. A predictive model using five of such polymorphisms (CXCL12 rs2839695, IL12A rs7615589, KIR3DL1 rs4554639, TGFB2 rs5781034 for the recipient and CD48 rs2295615 for the donor) together with the development of acute GVHD grade III/IV improved risk stratification of CMV reactivation. In conclusion, the data presented suggest that the screening of five polymorphisms in recipient and donor pre-transplantation could help to predict the individual risk of CMV infection development after HLA-identical allo-HSCT.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Citomegalovirus/genética , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunogenética , Estudos Retrospectivos , Transplante Homólogo/efeitos adversos
9.
Biomedicines ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356872

RESUMO

A successful Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant, B.1.1.7, has recently been reported in the UK, causing global alarm. Most likely, the new variant emerged in a persistently infected patient, justifying a special focus on these cases. Our aim in this study was to explore certain clinical profiles involving severe immunosuppression that may help explain the prolonged persistence of viable viruses. We present three severely immunosuppressed cases (A, B, and C) with a history of lymphoma and prolonged SARS-CoV-2 shedding (2, 4, and 6 months), two of whom finally died. Whole-genome sequencing of 9 and 10 specimens from Cases A and B revealed extensive within-patient acquisition of diversity, 12 and 28 new single nucleotide polymorphisms, respectively, which suggests ongoing SARS-CoV-2 replication. This diversity was not observed for Case C after analysing 5 sequential nasopharyngeal specimens and one plasma specimen, and was only observed in one bronchoaspirate specimen, although viral viability was still considered based on constant low Ct values throughout the disease and recovery of the virus in cell cultures. The acquired viral diversity in Cases A and B followed different dynamics. For Case A, new single nucleotide polymorphisms were quickly fixed (13-15 days) after emerging as minority variants, while for Case B, higher diversity was observed at a slower emergence: fixation pace (1-2 months). Slower SARS-CoV-2 evolutionary pace was observed for Case A following the administration of hyperimmune plasma. This work adds knowledge on SARS-CoV-2 prolonged shedding in severely immunocompromised patients and demonstrates viral viability, noteworthy acquired intra-patient diversity, and different SARS-CoV-2 evolutionary dynamics in persistent cases.

10.
Nat Commun ; 11(1): 3670, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728126

RESUMO

Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.


Assuntos
Brachypodium/genética , Diploide , Evolução Molecular , Genoma de Planta , Poliploidia , Cromossomos de Plantas/genética , Genoma de Cloroplastos , Genômica , Hibridização Genética , Filogenia , Polimorfismo de Nucleotídeo Único , Retroelementos/genética , Especificidade da Espécie
11.
Pediatr Infect Dis J ; 39(6): 533-538, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32091498

RESUMO

BACKGROUND: Several evidence-based guidelines for the management of children with febrile neutropenia (FN) have been published, with special focus in bacterial and fungal infections. However, the role of acute respiratory infections caused by respiratory viruses (RV) has not been clearly established. The aim of this study was to evaluate the epidemiology, clinical presentation and outcome of acute respiratory infections in children with FN. METHODS: Patients, <18 years of age admitted to the Pediatric Oncology-Hematology Unit after developing FN between November 2010 and December 2013, were prospectively included in the study. Children were evaluated by clinical examination and laboratory tests. Nasopharyngeal sample was obtained for detection of RV. RESULTS: There was a total of 112 episodes of FN in 73 children admitted to the hospital during a 32-month period. According to disease severity, 33% of the episodes were considered moderate or severe. Rhinovirus was the most frequently detected RV (66.6%; 24/36), followed by parainfluenza. On regard to clinical outcome, RV-infected children developed fewer episodes of moderate or severe FN compared with non-RV infected children (16.7% vs. 33.3%; P = 0.08). CONCLUSIONS: A great proportion of children with FN admitted to a tertiary hospital had a RV isolation. The rate of this RV isolation was significantly higher when a rapid molecular test was used compared with conventional microbiologic methods. Rhinovirus was the most frequently isolated, although its role as an active agent of acute infection was not clear. Children with FN and a RV isolate had a lower rate of severe disease.


Assuntos
Neutropenia Febril/virologia , Nasofaringe/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Vírus/isolamento & purificação , Doença Aguda/epidemiologia , Adolescente , Criança , Pré-Escolar , Neutropenia Febril/fisiopatologia , Feminino , Humanos , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença , Espanha/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Vírus/classificação
13.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703351

RESUMO

The Brachypodium genus is an informative model system for studying grass karyotype organization. Previous studies of a limited number of species and reference chromosomes have not provided a comprehensive picture of the enigmatic phylogenetic relationships in the genus. Comparative chromosome barcoding, which enables the reconstruction of the evolutionary history of individual chromosomes and their segments, allowed us to infer the relationships between putative ancestral karyotypes of extinct species and extant karyotypes of current species. We used over 80 chromosome-specific BAC (bacterial artificial chromosome) clones derived from five reference chromosomes of B. distachyon as probes against the karyotypes of twelve accessions representing five diploid and polyploid Brachypodium perennials. The results showed that descending dysploidy is common in Brachypodium and occurs primarily via nested chromosome fusions. Brachypodium distachyon was rejected as a putative ancestor for allotetraploid perennials and B. stacei for B. mexicanum. We propose two alternative models of perennial polyploid evolution involving either the incorporation of a putative x = 5 ancestral karyotype with different descending dysploidy patterns compared to B. distachyon chromosomes or hybridization of two x = 9 ancestors followed by genome doubling and descending dysploidy. Details of the karyotype structure and evolution in several Brachypodium perennials are revealed for the first time.


Assuntos
Brachypodium/genética , Cromossomos de Plantas/genética , Código de Barras de DNA Taxonômico , Evolução Molecular , Cariótipo , Poliploidia
14.
Mol Phylogenet Evol ; 127: 256-271, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29879468

RESUMO

The identification of homeologous genomes and the biogeographical analyses of highly reticulate allopolyploid-rich groups face the challenge of incorrectly inferring the genomic origins and the biogeographical patterns of the polyploids from unreliable strictly bifurcating trees. Here we reconstruct a plausible evolutionary scenario of the diverging and merging genomes inherited by the diploid and allopolyploid species and cytotypes of the model grass genus Brachypodium. We have identified the ancestral Brachypodium genomes and inferred the paleogeographical ranges for potential hybridization events that originated its allopolyploid taxa. We also constructed a comprehensive phylogeny of Brachypodium from five nuclear and plastid genes using Species Tree Minimum Evolution allele grafting and Species Network analysis. The divergence ages of the lineages were estimated from a consensus maximum clade credibility tree using fossil calibrations, whereas ages of origin of the diploid and allopolyploid species were inferred from coalescence Bayesian methods. The biogeographical events of the genomes were reconstructed using a stratified Dispersal-Extinction-Colonization model with three temporal windows. Our combined Minimum Evolution-coalescence-Bayesian approach allowed us to infer the origins and the identities of the homeologous genomes of the Brachypodium allopolyploids, matching the expected ploidy levels of the hybrids. To date, the current extant progenitor genomes (species) are only known for B. hybridum. Putative ancestral homeologous genome have been inherited by B. mexicanum, ancestral and recent genomes by B. boissieri, and only recently evolved genomes by B. retusum and the core perennial clade allopolyploids (B. phoenicoides, B. pinnatum 4x, B. rupestre 4x). We dissected the complex spatio-temporal evolution of ancestral and recent genomes and have detected successive splitting, dispersal and merging events for dysploid homeologous genomes in diverse geographical scenarios that have led to the current extant taxa. Our data support Mid-Miocene splits of the Holarctic ancestral genomes that preceded the Late Miocene origins of Brachypodium ancestors of the modern diploid species. Successive divergences of the annual B. stacei and B. distachyon diploid genomes were implied to have occurred in the Mediterranean region during the Late Miocene-Pliocene. By contrast, a profusion of splits, range expansions and different genome mergings were inferred for the perennial diploid genomes in the Mediterranean and Eurasian regions, with sporadic colonizations and further mergings in other continents during the Quaternary. A reliable biogeographical scenario was obtained for the Brachypodium genomes and allopolyploids where homeologous genomes split from their respective diploid counterpart lineages in the same ancestral areas, showing similar or distinct dispersals. By contrast, the allopolyploid taxa remained in the same ancestral ranges after hybridization and genome doubling events. Our approach should have utility in deciphering the genomic composition and the historical biogeography of other allopolyploid-rich organismal groups, which are predominant in eukaryotes.


Assuntos
Evolução Biológica , Brachypodium/genética , Genoma de Planta , Modelos Biológicos , Filogeografia , Poliploidia , Alelos , Teorema de Bayes , Diploide , Funções Verossimilhança , Filogenia , Especificidade da Espécie , Fatores de Tempo
15.
PeerJ ; 5: e3815, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28951814

RESUMO

The Pooideae are a highly diverse C3 grass subfamily that includes some of the most economically important crops, nested within the highly speciose core-pooid clade. Here, we build and explore the phylogeny of the Pooideae within a temporal framework, assessing its patterns of diversification and its chromosomal evolutionary changes in the light of past environmental transformations. We sequenced five plastid DNA loci, two coding (ndhF, matk) and three non-coding (trnH-psbA, trnT-L and trnL-F), in 163 Poaceae taxa, including representatives for all subfamilies of the grasses and all but four ingroup Pooideae tribes. Parsimony and Bayesian phylogenetic analyses were conducted and divergence times were inferred in BEAST using a relaxed molecular clock. Diversification rates were assessed using the MEDUSA approach, and chromosome evolution was analyzed using the chromEvol software. Diversification of the Pooideae started in the Late-Eocene and was especially intense during the Oligocene-Miocene. The background diversification rate increased significantly at the time of the origin of the Poodae + Triticodae clade. This shift in diversification occurred in a context of falling temperatures that potentially increased ecological opportunities for grasses adapted to open areas around the world. The base haploid chromosome number n = 7 has remained stable throughout the phylogenetic history of the core pooids and we found no link between chromosome transitions and major diversification events in the Pooideae.

16.
Int J Cardiol ; 222: 171-177, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27494731

RESUMO

BACKGROUND: The impact of high exercise loads on a previously healthy heart remains controversial. We examined the consequences of decades of strenuous endurance exercise at the highest competition level on heart dimensions and volumes as well as on serum biomarkers of cardiac fibrosis/remodeling. METHODS AND RESULTS: We compared echocardiographic measurements and serum biomarkers of cardiac fibrosis/remodeling [troponin I, galectin-3, matrix metallopeptidase-2 and -9, N-terminal pro-brain natriuretic peptide, carboxy-terminal propeptide of type I procollagen, and soluble suppressor of tumorigenicity-2 (sST-2)/interleukin(IL)-1R4] in 53 male athletes [11 former professional ('elite') and 42 amateur-level ('sub-elite') cyclists or runners, aged 40-70years] and 18 aged-matched controls. A subset of 15 subjects (5 controls, 3 sub-elite and 7 elite athletes) also underwent cardiac magnetic resonance imaging (cMRI). Elite and sub-elite athletes had greater echocardiography-determined left ventricular myocardial mass indexed to body surface area than controls (113±22, 115.2±23.1 and 94.8±21g/m(2), respectively, p=0.008 for group effect), with similar results for left (50.5±4.4, 48.2±4.3 and 46.4±5.2mm, p=0.008) and right (38.6±3.8, 41.1±5.5 and 34.7±4.3mm, p<0.001) ventricular end-diastolic diameter, and cMRI-determined left atrial volume indexed to body surface area (62.7±8.1, 56.4±16.0 and 39.0±14.1ml/m(2), p=0.026). Two athletes showed a non-coronary pattern of small, fibrotic left ventricular patches detected by late gadolinium enhancement. No group effect was noted for biomarkers. CONCLUSIONS: Regardless of their competition level at a younger age, veteran endurance athletes showed an overall healthy, non-pathological pattern of cardiac remodeling. Nonetheless, the physiopathology of the ventricular fibrotic patches detected warrants further investigation.


Assuntos
Exercício Físico/fisiologia , Ventrículos do Coração , Resistência Física/fisiologia , Aptidão Física/fisiologia , Esportes/fisiologia , Adulto , Atletas , Ecocardiografia/métodos , Testes de Função Cardíaca/métodos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Valores de Referência , Tempo , Função Ventricular/fisiologia , Remodelação Ventricular/fisiologia
17.
New Phytol ; 210(1): 310-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26612464

RESUMO

Relatively little is known about species-level genetic diversity in flowering plants outside the eudicots and monocots, and it is often unclear how to interpret genetic patterns in lineages with whole-genome duplications. We addressed these issues in a polyploid representative of Hydatellaceae, part of the water-lily order Nymphaeales. We examined a transcriptome of Trithuria submersa for evidence of recent whole-genome duplication, and applied transcriptome-derived microsatellite (expressed-sequence tag simple-sequence repeat (EST-SSR)) primers to survey genetic variation in populations across its range in mainland Australia. A transcriptome-based Ks plot revealed at least one recent polyploidization event, consistent with fixed heterozygous genotypes representing underlying sets of homeologous loci. A strong genetic division coincides with a trans-Nullarbor biogeographic boundary. Patterns of 'allelic' variation (no more than two variants per EST-SSR genotype) and recently published chromosomal evidence are consistent with the predicted polyploidization event and substantial homozygosity underlying fixed heterozygote SSR genotypes, which in turn reflect a selfing mating system. The Nullarbor Plain is a barrier to gene flow between two deep lineages of T. submersa that may represent cryptic species. The markers developed here should also be useful for further disentangling species relationships, and provide a first step towards future genomic studies in Trithuria.


Assuntos
Magnoliopsida/genética , Filogeografia , Poliploidia , Transcriptoma/genética , Alelos , Austrália , Duplicação Gênica , Marcadores Genéticos , Variação Genética , Heterozigoto , Repetições de Microssatélites/genética , Filogenia , Análise de Sequência de RNA
18.
Am J Bot ; 102(7): 1073-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26199365

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: We conducted environmental niche modeling (ENM) of the Brachypodium distachyon s.l. complex, a model group of two diploid annual grasses (B. distachyon, B. stacei) and their derived allotetraploid (B. hybridum), native to the circum-Mediterranean region. We (1) investigated the ENMs of the three species in their native range based on present and past climate data; (2) identified potential overlapping niches of the diploids and their hybrid across four Quaternary windows; (3) tested whether speciation was associated with niche divergence/conservatism in the complex species; and (4) tested for the potential of the polyploid outperforming the diploids in the native range.• METHODS: Geo-referenced data, altitude, and 19 climatic variables were used to construct the ENMs. We used paleoclimate niche models to trace the potential existence of ancestral gene flow among the hybridizing species of the complex.• KEY RESULTS: Brachypodium distachyon grows in higher, cooler, and wetter places, B. stacei in lower, warmer, and drier places, and B. hybridum in places with intermediate climatic features. Brachypodium hybridum had the largest niche overlap with its parent niches, but a similar distribution range and niche breadth.• CONCLUSIONS: Each species had a unique environmental niche though there were multiple niche overlapping areas for the diploids across time, suggesting the potential existence of several hybrid zones during the Pleistocene and the Holocene. No evidence of niche divergence was found, suggesting that species diversification was not driven by ecological speciation but by evolutionary history, though it could be associated to distinct environmental adaptations.


Assuntos
Brachypodium/genética , Evolução Biológica , Brachypodium/fisiologia , Clima , Diploide , Ecologia , Meio Ambiente , Região do Mediterrâneo , Modelos Teóricos , Poliploidia , Especificidade da Espécie
19.
PLoS One ; 10(6): e0129447, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26070136

RESUMO

BACKGROUND: Reactivation of cytomegalovirus (CMV) has been reported occasionally in immnunocompetent patients in the intensive care unit (ICU). The epidemiology and association of CMV infection with adverse outcome is not well defined in this population. Patients undergoing major heart surgery (MHS) are at a particularly high risk of infection. CMV infection has not been systematically monitored in MSH-ICU patients. METHODS: We assessed CMV plasma viremia weekly using a quantitative polymerase chain reaction assay in a prospective cohort of immunocompetent adults admitted to the MHS-ICU for at least 72 hours between October 2012 and May 2013. Risk factors for CMV infection and its potential association with continued hospitalization or death by day 30 (composited endpoint) were assessed using univariate and multivariate logistic regression analyses. RESULTS: CMV viremia at any level was recorded in 16.5% of patients at a median of 17 days (range, 3-54 days) after admission to the MHS-ICU. Diabetes (adjusted OR, 5.6; 95% CI, 1.8-17.4; p=0.003) and transfusion requirement (>10 units) (adjusted OR, 13.7; 95% CI, 3.9-47.8; p<0.001) were independent risk factors associated with CMV reactivation. Reactivation of CMV at any level was independently associated with the composite endpoint (adjusted OR, 12.1; 95% CI, 2.3-64; p=0.003). CONCLUSION: Reactivation of CMV is relatively frequent in immunocompetent patients undergoing MHS and is associated with prolonged hospitalization or death.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Infecções por Citomegalovirus/epidemiologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Monitoramento Epidemiológico , Terapia de Imunossupressão , Idoso , Feminino , Humanos , Incidência , Masculino , Análise Multivariada , Estudos Prospectivos , Fatores de Risco , Espanha/epidemiologia
20.
Ann Bot ; 112(6): 1015-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912698

RESUMO

BACKGROUND AND AIMS: Repeated hybridization and/or polyploidization confound classification and phylogenetic inference, and multiple colonizations at different time scales complicate biogeographical reconstructions. This study investigates whether such processes can explain long-term controversies in Anthoxanthum, and in particular its debated relationship to the genus Hierochloë, the evolution of its conspicuously diverse floral morphology, and the origins of its strikingly disjunct occurrences. A hypothesis for recurrent polyploid formation is proposed. METHODS: Three plastid (trnH-psbA, trnT-L and trnL-F) and two nuclear (ITS, ETS) DNA regions were sequenced in 57 accessions of 17 taxa (including 161 ETS clones) and Bayesian phylogenetic analyses were conducted. Divergence times were inferred in *BEAST using a strict molecular clock. KEY RESULTS: Anthoxanthum was inferred as monophyletic and sister to one species of Hierochloë based on the plastid data, whereas the nuclear data suggested that one section (Anthoxanthum section Anthoxanthum) is sister to a clade including the other section (Anthoxanthum section Ataxia) as sister to the genus Hierochloë. This could explain the variation in floral morphology; the aberrant characters in Ataxia seem to result from a Miocene hybridization event between one lineage with one fertile and two sterile florets (the Anthoxanthum lineage) and one which probably had three fertile florets as in extant Hierochloë. The distinct diploid A. gracile lineage originated in the Miocene; all other speciation events, many of them involving polyploidy, were dated to the Late Pliocene to Late Pleistocene. Africa was apparently colonized twice in the Late Pliocene (from the north to afro-alpine eastern Africa, and from south-east Asia to southern Africa), whereas Macaronesia was colonized much later (Late Pleistocene) by a diploid Mediterranean lineage. The widespread European tetraploid A. odoratum originated at least twice. CONCLUSIONS: Many of the controversies in Anthoxanthum can be explained by recurring hybridization and/or polyploidization on time scales ranging from the Miocene to the Late Pleistocene. All but one of the extant species shared most recent common ancestors in the Late Pliocene to the Late Pleistocene. The disjunct occurrences in Africa originated in the Late Pliocene via independent immigrations, whereas Macaronesia was colonized in the Late Pleistocene.


Assuntos
Evolução Molecular , Hibridização Genética , Poaceae/genética , África , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , DNA de Plantas/química , DNA de Plantas/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Folhas de Planta/classificação , Folhas de Planta/genética , Plastídeos/genética , Poaceae/classificação , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA