Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33028631

RESUMO

The σ-2 receptor (S2R) complex has been implicated in CNS disorders ranging from anxiety and depression to neurodegenerative disorders such as Alzheimer's disease (AD). The proteins comprising the S2R complex impact processes including autophagy, cholesterol synthesis, progesterone signaling, lipid membrane-bound protein trafficking, and receptor stabilization at the cell surface. While there has been much progress in understanding the role of S2R in cellular processes and its potential therapeutic value, a great deal remains unknown. The International Symposium on Sigma-2 Receptors is held in conjunction with the annual Society for Neuroscience (SfN) conference to promote collaboration and advance the field of S2R research. This review summarizes updates presented at the Fourth International Symposium on Sigma-2 Receptors: Role in Health and Disease, a Satellite Symposium held at the 2019 SfN conference. Interdisciplinary members of the S2R research community presented both previously published and preliminary results from ongoing studies of the role of S2R in cellular metabolism, the anatomic and cellular expression patterns of S2R, the relationship between S2R and amyloid ß (Aß) in AD, the role of S2R complex protein PGRMC1 in health and disease, and the efforts to design new S2R ligands for the purposes of research and drug development. The proceedings from this symposium are reported here as an update on the field of S2R research, as well as to highlight the value of the symposia that occur yearly in conjunction with the SfN conference.


Assuntos
Doença de Alzheimer , Receptores sigma , Peptídeos beta-Amiloides , Humanos , Proteínas de Membrana , Progesterona , Receptores de Progesterona
2.
Alzheimers Res Ther ; 12(1): 21, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122400

RESUMO

BACKGROUND: Synapse damage and loss are fundamental to the pathophysiology of Alzheimer's disease (AD) and lead to reduced cognitive function. The goal of this review is to address the challenges of forging new clinical development approaches for AD therapeutics that can demonstrate reduction of synapse damage or loss. The key points of this review include the following: Synapse loss is a downstream effect of amyloidosis, tauopathy, inflammation, and other mechanisms occurring in AD.Synapse loss correlates most strongly with cognitive decline in AD because synaptic function underlies cognitive performance.Compounds that halt or reduce synapse damage or loss have a strong rationale as treatments of AD.Biomarkers that measure synapse degeneration or loss in patients will facilitate clinical development of such drugs.The ability of methods to sensitively measure synapse density in the brain of a living patient through synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) imaging, concentrations of synaptic proteins (e.g., neurogranin or synaptotagmin) in the cerebrospinal fluid (CSF), or functional imaging techniques such as quantitative electroencephalography (qEEG) provides a compelling case to use these types of measurements as biomarkers that quantify synapse damage or loss in clinical trials in AD. CONCLUSION: A number of emerging biomarkers are able to measure synapse injury and loss in the brain and may correlate with cognitive function in AD. These biomarkers hold promise both for use in diagnostics and in the measurement of therapeutic successes.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Sinapses/patologia , Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Humanos , Tomografia por Emissão de Pósitrons/métodos
3.
Biochim Biophys Acta ; 1866(2): 339-349, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27452206

RESUMO

Progesterone receptor membrane component 1 (PGRMC1) is a multi-functional protein with a heme-binding moiety related to that of cytochrome b5, which is a putative progesterone receptor. The recently solved PGRMC1 structure revealed that heme-binding involves coordination by a tyrosinate ion at Y113, and induces dimerization which is stabilized by hydrophobic stacking of heme on adjacent monomers. Dimerization is required for association with cytochrome P450 (cyP450) enzymes, which mediates chemoresistance to doxorubicin and may be responsible for PGRMC1's anti-apoptotic activity. Here we review the multiple attested involvement of PGRMC1 in diverse functions, including regulation of cytochrome P450, steroidogenesis, vesicle trafficking, progesterone signaling and mitotic spindle and cell cycle regulation. Its wide range of biological functions is attested to particularly by its emerging association with cancer and progesterone-responsive female reproductive tissues. PGRMC1 exhibits all the hallmarks of a higher order nexus signal integration hub protein. It appears capable of acting as a detector that integrates information from kinase/phosphatase pathways with heme and CO levels and probably redox status.


Assuntos
Proteínas de Membrana/fisiologia , Neoplasias/metabolismo , Receptores de Progesterona/fisiologia , Ciclo Celular , Proliferação de Células , Humanos , Proteínas de Membrana/química , Neoplasias/patologia , Multimerização Proteica , Receptores de Progesterona/química , Receptores sigma/fisiologia
4.
Assay Drug Dev Technol ; 7(2): 180-90, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19505233

RESUMO

Measurement of antiproliferative capacity of a compound is central to early oncology drug discovery, with information about the precise mechanism of compound action typically being acquired during later downstream assays. Here we describe the development and validation of an in vitro image-based assay that simultaneously measures tumor cell count, late apoptotic morphology, and nuclear DNA content (termed the proliferation, apoptosis, and DNA content [PAD] assay) by using a DNA binding fluorescent dye. The PAD assay determines whether a compound's antiproliferative effect occurs via cell cycle arrest or induction of apoptosis, replacing downstream assays for 1/50(th) the cost. We used this assay to screen a kinase inhibitor-biased library and discovered an Aurora kinase inhibitor, and we also used it to drive structure-activity relationship to clinical candidate Investigational New Drug filing within 2 years. The simplicity of the PAD assay was critical to the rapid time frame within which this candidate was identified and progressed. This inhibitor is currently beginning Phase II clinical trials.


Assuntos
Apoptose/efeitos dos fármacos , DNA/análise , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Aurora Quinases , Bromodesoxiuridina/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fase G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA