RESUMO
Matrix metalloproteinases (MMPs) are a large family of proteinases that remodel extracellular matrix (ECM) components and cleave a number of cell surface proteins. MMP activity is regulated via a number of mechanisms, including inhibition by tissue inhibitors of metalloproteinases (TIMPs). Originally thought to cleave only ECM proteins, MMP substrates are now known to include signaling molecules (growth factor receptors) and cell adhesion molecules. Recent data suggest a role for MMPs in a number of renal pathophysiologies, both acute and chronic. This review will focus on the expression and localization of MMPs and TIMPs in the kidney, as well as summarizing the current information linking these proteins to acute kidney injury, glomerulosclerosis/tubulointerstitial fibrosis, chronic allograft nephropathy, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma.
Assuntos
Nefropatias/enzimologia , Metaloproteinases da Matriz/metabolismo , Animais , Humanos , Rim/enzimologia , Rim/metabolismo , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Metaloproteinases da Matriz/química , Inibidores Teciduais de Metaloproteinases/química , Inibidores Teciduais de Metaloproteinases/metabolismoRESUMO
Arsenic is a known human carcinogen that affects a variety of processes within the cell. In this study, the effects of environmentally relevant As(III) exposures on the ubiquitin (Ub)-proteasome pathway have been investigated. Low-level As(III) exposure (0.5 - 10 microM) causes an accumulation of high-molecular-weight ubiquitin protein conjugates in both precision-cut rabbit renal-cortical slices and human embryonic kidney (HEK) 293 cells. The As(III) doses that induced these molecular changes were subcytotoxic in both model systems. Doses of 10 microM As(III) decreased cellular activity of the 20S proteasome by 40 and 15% in slices and HEK293 cells, respectively. As(III) did not cause any notable difference in Ub-conjugating activity of rabbit renal slices or HEK293 cells. Since ubiquitination plays such a vital role in maintaining cellular homeostasis, this noticeable perturbation of cellular ubiquitination is likely to have a multitude of signaling effects within the cells and may contribute to the pathogenesis of low-level arsenic.
Assuntos
Arsenitos/toxicidade , Córtex Renal/efeitos dos fármacos , Proteínas/metabolismo , Ubiquitina/metabolismo , Animais , Células Cultivadas , Cisteína Endopeptidases/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Córtex Renal/metabolismo , Complexos Multienzimáticos/efeitos dos fármacos , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , CoelhosRESUMO
Compound A (2-fluoromethoxy-1,1,3,3,3-pentafluoro-1-propene) is a degradation product of the anesthetic sevoflurane which is created in closed-circuit anesthetic machines. Past in vivo and in vitro studies have implied that Compound A is nephrotoxic via bioactivation through the cysteine conjugate beta-lyase pathway. Although glutathione (GSH) conjugates of Compound A have been reported, it is not clear if they are formed enzymatically or via direct reaction with GSH. To determine if these metabolites are produced and toxic, a tissue slice system that first exposes male Fischer 344 rat liver slices to volatilized Compound A followed by exposure of rat kidney slices to the liver incubate was employed. Liver slices exposed to volatilized Compound A (6-12 microM medium conc.; approximately 23 ppm) exhibited a loss of K+ by 6 h, which was not seen in kidney slices exposed to Compound A. Aminobenzotriazole, a cytochrome P 450 suicide inhibitor, initially inhibits the cytotoxicity of Compound A to liver slices (at these times and concentrations). The sequential liver/kidney slice experiments using Compound A have not demonstrated nephrotoxic results. GSH conjugates were synthesized and was found to be nephrotoxic at concentrations above 91 microM (18 h), with higher concentrations showing toxicity at earlier times. Additionally, non-enzymatic reactions of Compound A with GSH or sulfhydryl-containing medium produces nephrotoxic products. These studies show that Compound A is directly toxic to the liver, possibly via P 450 activation, and Compound A can react with sulfhydryls directly to produce a nephrotoxic.