Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483896

RESUMO

Regulation of mRNA translation by eukaryotic initiation factors (eIFs) is crucial for cell survival. In humans, eIF3 stimulates translation of the JUN mRNA which encodes the transcription factor JUN, an oncogenic transcription factor involved in cell cycle progression, apoptosis, and cell proliferation. Previous studies revealed that eIF3 activates translation of the JUN mRNA by interacting with a stem loop in the 5' untranslated region (5' UTR) and with the 5' -7-methylguanosine cap structure. In addition to its interaction site with eIF3, the JUN 5' UTR is nearly one kilobase in length, and has a high degree of secondary structure, high GC content, and an upstream start codon (uAUG). This motivated us to explore the complexity of JUN mRNA translation regulation in human cells. Here we find that JUN translation is regulated in a sequence and structure-dependent manner in regions adjacent to the eIF3-interacting site in the JUN 5' UTR. Furthermore, we identify contributions of an additional initiation factor, eIF4A, in JUN regulation. We show that enhancing the interaction of eIF4A with JUN by using the compound Rocaglamide A (RocA) represses JUN translation. We also find that both the upstream AUG (uAUG) and the main AUG (mAUG) contribute to JUN translation and that they are conserved throughout vertebrates. Our results reveal additional layers of regulation for JUN translation and show the potential of JUN as a model transcript for understanding multiple interacting modes of translation regulation.


Assuntos
Fator de Iniciação 3 em Eucariotos , Biossíntese de Proteínas , Animais , Humanos , Códon de Iniciação/genética , Regiões 5' não Traduzidas/genética , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
2.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014201

RESUMO

Regulation of mRNA translation by eukaryotic initiation factors (eIFs) is crucial for cell survival. In humans, eIF3 stimulates translation of the JUN mRNA which encodes the transcription factor JUN, an oncogenic transcription factor involved in cell cycle progression, apoptosis, and cell proliferation. Previous studies revealed that eIF3 activates translation of the JUN mRNA by interacting with a stem loop in the 5' untranslated region (5' UTR) and with the 5'-7-methylguanosine cap structure. In addition to its interaction site with eIF3, the JUN 5' UTR is nearly one kilobase in length, and has a high degree of secondary structure, high GC content, and an upstream start codon (uAUG). This motivated us to explore the complexity of JUN mRNA translation regulation in human cells. Here we find that JUN translation is regulated in a sequence and structure-dependent manner in regions adjacent to the eIF3-interacting site in the JUN 5' UTR. Furthermore, we identify contributions of an additional initiation factor, eIF4A, in JUN regulation. We show that enhancing the interaction of eIF4A with JUN by using the compound Rocaglamide A (RocA) represses JUN translation. We also find that both the upstream AUG (uAUG) and the main AUG (mAUG) contribute to JUN translation and that they are conserved throughout vertebrates. Our results reveal additional layers of regulation for JUN translation and show the potential of JUN as a model transcript for understanding multiple interacting modes of translation regulation.

3.
PLoS One ; 18(9): e0292080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768948

RESUMO

Improper regulation of translation initiation, a vital checkpoint of protein synthesis in the cell, has been linked to a number of cancers. Overexpression of protein subunits of eukaryotic translation initiation factor 3 (eIF3) is associated with increased translation of mRNAs involved in cell proliferation. In addition to playing a major role in general translation initiation by serving as a scaffold for the assembly of translation initiation complexes, eIF3 regulates translation of specific cellular mRNAs and viral RNAs. Mutations in the N-terminal Helix-Loop-Helix (HLH) RNA-binding motif of the EIF3A subunit interfere with Hepatitis C Virus Internal Ribosome Entry Site (IRES) mediated translation initiation in vitro. Here we show that the EIF3A HLH motif controls translation of a small set of cellular transcripts enriched in oncogenic mRNAs, including MYC. We demonstrate that the HLH motif of EIF3A acts specifically on the 5' UTR of MYC mRNA and modulates the function of EIF4A1 on select transcripts during translation initiation. In Ramos lymphoma cell lines, which are dependent on MYC overexpression, mutations in the HLH motif greatly reduce MYC expression, impede proliferation and sensitize cells to anti-cancer compounds. These results reveal the potential of the EIF3A HLH motif in eIF3 as a promising chemotherapeutic target.


Assuntos
Fator de Iniciação 3 em Eucariotos , Biossíntese de Proteínas , Humanos , RNA Mensageiro/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/metabolismo , Ribossomos/genética , Sequências Hélice-Alça-Hélice
4.
ACS Cent Sci ; 9(6): 1160-1169, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396857

RESUMO

The Escherichia coli (E. coli) ribosome can incorporate a variety of non-l-α-amino acid monomers into polypeptide chains in vitro but with poor efficiency. Although these monomers span a diverse set of compounds, there exists no high-resolution structural information regarding their positioning within the catalytic center of the ribosome, the peptidyl transferase center (PTC). Thus, details regarding the mechanism of amide bond formation and the structural basis for differences and defects in incorporation efficiency remain unknown. Within a set of three aminobenzoic acid derivatives-3-aminopyridine-4-carboxylic acid (Apy), ortho-aminobenzoic acid (oABZ), and meta-aminobenzoic acid (mABZ)-the ribosome incorporates Apy into polypeptide chains with the highest efficiency, followed by oABZ and then mABZ, a trend that does not track with the nucleophilicity of the reactive amines. Here, we report high-resolution cryo-EM structures of the ribosome with each of these three aminobenzoic acid derivatives charged on tRNA bound in the aminoacyl-tRNA site (A-site). The structures reveal how the aromatic ring of each monomer sterically blocks the positioning of nucleotide U2506, thereby preventing rearrangement of nucleotide U2585 and the resulting induced fit in the PTC required for efficient amide bond formation. They also reveal disruptions to the bound water network that is believed to facilitate formation and breakdown of the tetrahedral intermediate. Together, the cryo-EM structures reported here provide a mechanistic rationale for differences in reactivity of aminobenzoic acid derivatives relative to l-α-amino acids and each other and identify stereochemical constraints on the size and geometry of non-monomers that can be accepted efficiently by wild-type ribosomes.

5.
RNA ; 29(10): 1500-1508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419664

RESUMO

The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro. RNA tags in the Escherichia coli 50S subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild-type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes.


Assuntos
Escherichia coli , RNA Ribossômico , RNA Ribossômico/genética , RNA Ribossômico/análise , Escherichia coli/genética , Ribossomos/genética , Ribossomos/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/química , Subunidades Ribossômicas Maiores , RNA Bacteriano/genética , RNA Bacteriano/química , Proteínas Ribossômicas
6.
Appl Environ Microbiol ; 89(5): e0002523, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098974

RESUMO

The Candidate Phyla Radiation (CPR), also referred to as superphylum Patescibacteria, is a very large group of bacteria with no pure culture representatives discovered by 16S rRNA sequencing or genome-resolved metagenomic analyses of environmental samples. Within the CPR, candidate phylum Parcubacteria, previously referred to as OD1, is prevalent in anoxic sediments and groundwater. Previously, we had identified a specific member of the Parcubacteria (referred to as DGGOD1a) as an important member of a methanogenic benzene-degrading consortium. Phylogenetic analyses herein place DGGOD1a within the clade "Candidatus Nealsonbacteria." Because of its persistence over many years, we hypothesized that "Ca. Nealsonbacteria" DGGOD1a must play an important role in sustaining anaerobic benzene metabolism in the consortium. To try to identify its growth substrate, we amended the culture with a variety of defined compounds (pyruvate, acetate, hydrogen, DNA, and phospholipid), as well as crude culture lysate and three subfractions thereof. We observed the greatest (10-fold) increase in the absolute abundance of "Ca. Nealsonbacteria" DGGOD1a only when the consortium was amended with crude cell lysate. These results implicate "Ca. Nealsonbacteria" in biomass recycling. Fluorescence in situ hybridization and cryogenic transmission electron microscope images revealed that "Ca. Nealsonbacteria" DGGOD1a cells were attached to larger archaeal Methanothrix cells. This apparent epibiont lifestyle was supported by metabolic predictions from a manually curated complete genome. This is one of the first examples of bacterial-archaeal episymbiosis and may be a feature of other "Ca. Nealsonbacteria" found in anoxic environments. IMPORTANCE An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny "Candidatus Nealsonbacteria" cells attached to a large Methanothrix cell, revealing a novel episymbiosis.


Assuntos
Archaea , Euryarchaeota , Archaea/metabolismo , Benzeno/metabolismo , Filogenia , Biomassa , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Hibridização in Situ Fluorescente , Bactérias/genética , Euryarchaeota/metabolismo
7.
Angew Chem Int Ed Engl ; 59(8): 3122-3126, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31828898

RESUMO

By transplanting identity elements into E. coli tRNAfMet , we have engineered an orthogonal initiator tRNA (itRNATy2 ) that is a substrate for Methanocaldococcus jannaschii TyrRS. We demonstrate that itRNATy2 can initiate translation in vivo with aromatic non-canonical amino acids (ncAAs) bearing diverse sidechains. Although the initial system suffered from low yields, deleting redundant copies of tRNAfMet from the genome afforded an E. coli strain in which the efficiency of non-canonical initiation equals elongation. With this improved system we produced a protein containing two distinct ncAAs at the first and second positions, an initial step towards producing completely unnatural polypeptides in vivo. This work provides a valuable tool to synthetic biology and demonstrates remarkable versatility of the E. coli translational machinery for initiation with ncAAs in vivo.


Assuntos
Aminoácidos/metabolismo , Biossíntese de Proteínas/fisiologia , Engenharia de Proteínas/métodos , Humanos
8.
Nat Commun ; 10(1): 4563, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594941

RESUMO

Ribosome-synthesized post-translationally modified peptides (RiPPs) represent a rapidly expanding class of natural products with various biological activities. Linear azol(in)e-containing peptides (LAPs) comprise a subclass of RiPPs that display outstanding diversity of mechanisms of action while sharing common structural features. Here, we report the discovery of a new LAP biosynthetic gene cluster in the genome of Rhizobium Pop5, which encodes the precursor peptide and modification machinery of phazolicin (PHZ) - an extensively modified peptide exhibiting narrow-spectrum antibacterial activity against some symbiotic bacteria of leguminous plants. The cryo-EM structure of the Escherichia coli 70S-PHZ complex reveals that the drug interacts with the 23S rRNA and uL4/uL22 proteins and obstructs ribosomal exit tunnel in a way that is distinct from other compounds. We show that the uL4 loop sequence determines the species-specificity of antibiotic action. PHZ expands the known diversity of LAPs and may be used in the future as biocontrol agent for agricultural needs.


Assuntos
Antibacterianos/farmacologia , Azóis/farmacologia , Agentes de Controle Biológico/farmacologia , Peptídeos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Azóis/química , Azóis/metabolismo , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Microscopia Crioeletrônica , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Família Multigênica , Biossíntese Peptídica/genética , Peptídeos/química , Peptídeos/metabolismo , Phaseolus/microbiologia , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Rhizobium/genética , Rhizobium/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Especificidade da Espécie , Simbiose
9.
Biochemistry ; 58(45): 4494-4504, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31607123

RESUMO

Ribosome engineering has emerged as a promising field in synthetic biology, particularly concerning the production of new sequence-defined polymers. Mutant ribosomes have been developed that improve the incorporation of several nonstandard monomers including d-amino acids, dipeptides, and ß-amino acids into polypeptide chains. However, there remains little mechanistic understanding of how these ribosomes catalyze incorporation of these new substrates. Here, we probed the properties of a mutant ribosome-P7A7-evolved for better in vivo ß-amino acid incorporation through in vitro biochemistry and cryo-electron microscopy. Although P7A7 is a functional ribosome in vivo, it is inactive in vitro, and assembles poorly into 70S ribosome complexes. Structural characterization revealed large regions of disorder in the peptidyltransferase center and nearby features, suggesting a defect in assembly. Comparison of RNA helix and ribosomal protein occupancy with other assembly intermediates revealed that P7A7 is stalled at a late stage in ribosome assembly, explaining its weak activity. These results highlight the importance of ensuring efficient ribosome assembly during ribosome engineering toward new catalytic abilities.


Assuntos
Aminoácidos/genética , Escherichia coli/genética , Ribossomos/genética , Aminoácidos/química , Escherichia coli/química , Modelos Moleculares , Mutação , Peptídeos/química , Peptídeos/genética , Biossíntese de Proteínas , Ribossomos/química
10.
RNA ; 25(10): 1324-1336, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31263002

RESUMO

Polypyrimidine tract-binding proteins (PTBPs) are RNA binding proteins that regulate a number of posttranscriptional events. Human PTBP1 transits between the nucleus and cytoplasm and is thought to regulate RNA processes in both. However, information about PTBP1 mRNA isoforms and regulation of PTPB1 expression remains incomplete. Here we mapped the major PTBP1 mRNA isoforms in HEK293T cells and identified alternative 5' and 3' untranslated regions (5'-UTRs, 3'-UTRs), as well as alternative splicing patterns in the protein coding region. We also assessed how the observed PTBP1 mRNA isoforms contribute to PTBP1 expression in different phases of the cell cycle. Previously, PTBP1 mRNAs were shown to crosslink to eukaryotic translation initiation factor 3 (eIF3). We find that eIF3 binds differently to each PTBP1 mRNA isoform in a cell cycle dependent manner. We also observe a strong correlation between eIF3 binding to PTBP1 mRNAs and repression of PTBP1 levels during the S phase of the cell cycle. Our results provide evidence of translational regulation of PTBP1 protein levels during the cell cycle, which may affect downstream regulation of alternative splicing and translation mediated by PTBP1 protein isoforms.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Biossíntese de Proteínas , Isoformas de RNA/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Células HEK293 , Humanos
11.
Nat Struct Mol Biol ; 26(6): 501-509, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160784

RESUMO

The drug-like molecule PF-06446846 (PF846) binds the human ribosome and selectively blocks the translation of a small number of proteins by an unknown mechanism. In structures of PF846-stalled human ribosome nascent chain complexes, PF846 binds in the ribosome exit tunnel in a eukaryotic-specific pocket formed by 28S ribosomal RNA, and alters the path of the nascent polypeptide chain. PF846 arrests the translating ribosome in the rotated state of translocation, in which the peptidyl-transfer RNA 3'-CCA end is improperly docked in the peptidyl transferase center. Selections of messenger RNAs from mRNA libraries using translation extracts reveal that PF846 can stall translation elongation, arrest termination or even enhance translation, depending on nascent chain sequence context. These results illuminate how a small molecule selectively targets translation by the human ribosome, and provides a foundation for developing small molecules that modulate the production of proteins of therapeutic interest.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Modelos Moleculares , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo
12.
Nucleic Acids Res ; 47(8): 4198-4210, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805621

RESUMO

The ribosome exit tunnel is an important structure involved in the regulation of translation and other essential functions such as protein folding. By comparing 20 recently obtained cryo-EM and X-ray crystallography structures of the ribosome from all three domains of life, we here characterize the key similarities and differences of the tunnel across species. We first show that a hierarchical clustering of tunnel shapes closely reflects the species phylogeny. Then, by analyzing the ribosomal RNAs and proteins, we explain the observed geometric variations and show direct association between the conservations of the geometry, structure and sequence. We find that the tunnel is more conserved in the upper part close to the polypeptide transferase center, while in the lower part, it is substantially narrower in eukaryotes than in bacteria. Furthermore, we provide evidence for the existence of a second constriction site in eukaryotic exit tunnels. Overall, these results have several evolutionary and functional implications, which explain certain differences between eukaryotes and prokaryotes in their translation mechanisms. In particular, they suggest that major co-translational functions of bacterial tunnels were externalized in eukaryotes, while reducing the tunnel size provided some other advantages, such as facilitating the nascent chain elongation and enabling antibiotic resistance.


Assuntos
Archaea/genética , Bactérias/genética , Eucariotos/genética , Biossíntese de Proteínas , RNA Ribossômico/química , Proteínas Ribossômicas/química , Ribossomos/ultraestrutura , Sequência de Aminoácidos , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Eucariotos/classificação , Eucariotos/metabolismo , Conformação de Ácido Nucleico , Filogenia , Dobramento de Proteína , Estrutura Secundária de Proteína , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/classificação , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Proc Natl Acad Sci U S A ; 115(13): 3368-3373, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531059

RESUMO

Argonaute proteins (Agos) are present in all domains of life. Although the physiological function of eukaryotic Agos in regulating gene expression is well documented, the biological roles of many of their prokaryotic counterparts remain enigmatic. In some bacteria, Agos are associated with CRISPR (clustered regularly interspaced short palindromic repeats) loci and use noncanonical 5'-hydroxylated guide RNAs (gRNAs) for nucleic acid targeting. Here we show that using 5-bromo-2'-deoxyuridine (BrdU) as the 5' nucleotide of gRNAs stabilizes in vitro reconstituted CRISPR-associated Marinitoga piezophila Argonaute-gRNA complexes (MpAgo RNPs) and significantly improves their specificity and affinity for RNA targets. Using reconstituted MpAgo RNPs with 5'-BrdU-modified gRNAs, we mapped the seed region of the gRNA and identified the nucleotides of the gRNA that play the most significant role in targeting specificity. We also show that these MpAgo RNPs can be programmed to distinguish between substrates that differ by a single nucleotide, using permutations at the sixth and seventh positions in the gRNA. Using these specificity features, we employed MpAgo RNPs to detect specific adenosine-to-inosine-edited RNAs in a complex mixture. These findings broaden our mechanistic understanding of the interactions of Argonautes with guide and substrate RNAs, and demonstrate that MpAgo RNPs with 5'-BrdU-modified gRNAs can be used as a highly specific RNA-targeting platform to probe RNA biology.


Assuntos
Proteínas Argonautas/química , Bactérias/genética , Sistemas CRISPR-Cas , RNA Bacteriano/química , RNA Guia de Cinetoplastídeos/química , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Modelos Biológicos , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
14.
mBio ; 8(4)2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790206

RESUMO

Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 (PFK2), H+-plasma membrane ATPase (PMA1), and glucose sensors (SNF3 and RGT2) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions.IMPORTANCE Living cells are fine-tuned through evolution to thrive in their native environments. Genome alterations to create organisms for specific biotechnological applications may result in unexpected and undesired phenotypes. We used a minimal synthetic biological system in the yeast Saccharomyces cerevisiae as a platform to reveal novel connections between carbon sensing, starvation conditions, and energy homeostasis.


Assuntos
Celobiose/metabolismo , Glucose/metabolismo , Glicólise , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Carbono/metabolismo , Metabolismo Energético , Fermentação , Regulação Fúngica da Expressão Gênica , Metabolômica , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais
15.
RNA Biol ; 14(5): 553-567, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-26828225

RESUMO

IRES-mediated translation of key cell fate regulating genes has been implicated in tumorigenesis. Concerted action of canonical eukaryotic initiation factors and IRES transacting factors (ITAFs) was shown to regulate cellular IRES mediated translation; however, the precise molecular mechanism of ribosome recruitment to cellular IRESes remains unclear. Here we show that the X-linked inhibitor of apoptosis (XIAP) IRES operates in an evolutionary conserved viral like mode and the structural integrity, particularly in the vicinity of AUG, is critical for ribosome recruitment. The binding of eIF3 together with PABP potentiates ribosome recruitment to the IRES. Our data support the model in which eIF3 binds directly to the XIAP IRES RNA in a structure-dependent manner and acts as a scaffold for IRES RNA, PABP and the 40S ribosome.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Sítios Internos de Entrada Ribossomal , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Apoptose , Códon de Iniciação/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Células HeLa , Humanos , RNA Mensageiro/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
16.
Proc Natl Acad Sci U S A ; 113(47): 13402-13407, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821780

RESUMO

Accurate protein folding is essential for proper cellular and organismal function. In the cell, protein folding is carefully regulated; changes in folding homeostasis (proteostasis) can disrupt many cellular processes and have been implicated in various neurodegenerative diseases and other pathologies. For many proteins, the initial folding process begins during translation while the protein is still tethered to the ribosome; however, most biophysical studies of a protein's energy landscape are carried out in isolation under idealized, dilute conditions and may not accurately report on the energy landscape in vivo. Thus, the energy landscape of ribosome nascent chains and the effect of the tethered ribosome on nascent chain folding remain unclear. Here we have developed a general assay for quantitatively measuring the folding stability of ribosome nascent chains, and find that the ribosome exerts a destabilizing effect on the polypeptide chain. This destabilization decreases as a function of the distance away from the peptidyl transferase center. Thus, the ribosome may add an additional layer of robustness to the protein-folding process by avoiding the formation of stable partially folded states before the protein has completely emerged from the ribosome.


Assuntos
Ribossomos/metabolismo , Escherichia coli/metabolismo , Metotrexato/farmacologia , Peptídeo Hidrolases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Ribossomos/efeitos dos fármacos , Espectrometria de Fluorescência , Ureia/farmacologia
17.
Nature ; 536(7614): 96-9, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27462815

RESUMO

Eukaryotic mRNAs contain a 5' cap structure that is crucial for recruitment of the translation machinery and initiation of protein synthesis. mRNA recognition is thought to require direct interactions between eukaryotic initiation factor 4E (eIF4E) and the mRNA cap. However, translation of numerous capped mRNAs remains robust during cellular stress, early development, and cell cycle progression despite inactivation of eIF4E. Here we describe a cap-dependent pathway of translation initiation in human cells that relies on a previously unknown cap-binding activity of eIF3d, a subunit of the 800-kilodalton eIF3 complex. A 1.4 Å crystal structure of the eIF3d cap-binding domain reveals unexpected homology to endonucleases involved in RNA turnover, and allows modelling of cap recognition by eIF3d. eIF3d makes specific contacts with the cap, as exemplified by cap analogue competition, and these interactions are essential for assembly of translation initiation complexes on eIF3-specialized mRNAs such as the cell proliferation regulator c-Jun (also known as JUN). The c-Jun mRNA further encodes an inhibitory RNA element that blocks eIF4E recruitment, thus enforcing alternative cap recognition by eIF3d. Our results reveal a mechanism of cap-dependent translation that is independent of eIF4E, and illustrate how modular RNA elements work together to direct specialized forms of translation initiation.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Capuzes de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ligação Competitiva , Cristalografia por Raios X , Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4F em Eucariotos/metabolismo , Genes jun/genética , Humanos , Modelos Moleculares , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética , Proteínas de Ligação a RNA/química
18.
Cold Spring Harb Protoc ; 2016(6)2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250940

RESUMO

This protocol describes a method for CRISPR-Cas9-mediated genome editing that results in scarless and marker-free integrations of DNA into Saccharomyces cerevisiae genomes. DNA integration results from cotransforming (1) a single plasmid (pCAS) that coexpresses the Cas9 endonuclease and a uniquely engineered single guide RNA (sgRNA) expression cassette and (2) a linear DNA molecule that is used to repair the chromosomal DNA damage by homology-directed repair. For target specificity, the pCAS plasmid requires only a single cloning modification: replacing the 20-bp guide RNA sequence within the sgRNA cassette. This CRISPR-Cas9 protocol includes methods for (1) cloning the unique target sequence into pCAS, (2) assembly of the double-stranded DNA repair oligonucleotides, and (3) cotransformation of pCAS and linear repair DNA into yeast cells. The protocol is technically facile and requires no special equipment. It can be used in any S. cerevisiae strain, including industrial polyploid isolates. Therefore, this CRISPR-Cas9-based DNA integration protocol is achievable by virtually any yeast genetics and molecular biology laboratory.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes/métodos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Recombinação Genética
19.
Structure ; 24(6): 886-96, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27210288

RESUMO

Eukaryotic initiation factor 3 (eIF3), an essential multi-protein complex involved in translation initiation, is composed of 12 tightly associated subunits in humans. While the overall structure of eIF3 is known, the mechanism of its assembly and structural consequences of dysregulation of eIF3 subunit expression seen in many cancers is largely unknown. Here we show that subunits in eIF3 assemble into eIF3 in an interdependent manner. Assembly of eIF3 is governed primarily by formation of a helical bundle, composed of helices extending C-terminally from PCI-MPN domains in eight subunits. We propose that, while the minimal subcomplex of human-like eIF3 functional for translation initiation in cells consists of subunits a, b, c, f, g, i, and m, numerous other eIF3 subcomplexes exist under circumstances of subunit over- or underexpression. Thus, eIF3 subcomplexes formed or "released" due to dysregulated subunit expression may be determining factors contributing to eIF3-related cancers.


Assuntos
Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/metabolismo , Neurospora crassa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Neurospora crassa/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
20.
Nature ; 522(7554): 111-4, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25849773

RESUMO

Regulation of protein synthesis is fundamental for all aspects of eukaryotic biology by controlling development, homeostasis and stress responses. The 13-subunit, 800-kilodalton eukaryotic initiation factor 3 (eIF3) organizes initiation factor and ribosome interactions required for productive translation. However, current understanding of eIF3 function does not explain genetic evidence correlating eIF3 deregulation with tissue-specific cancers and developmental defects. Here we report the genome-wide discovery of human transcripts that interact with eIF3 using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). eIF3 binds to a highly specific program of messenger RNAs involved in cell growth control processes, including cell cycling, differentiation and apoptosis, via the mRNA 5' untranslated region. Surprisingly, functional analysis of the interaction between eIF3 and two mRNAs encoding the cell proliferation regulators c-JUN and BTG1 reveals that eIF3 uses different modes of RNA stem-loop binding to exert either translational activation or repression. Our findings illuminate a new role for eIF3 in governing a specialized repertoire of gene expression and suggest that binding of eIF3 to specific mRNAs could be targeted to control carcinogenesis.


Assuntos
Regulação para Baixo , Fator de Iniciação 3 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas/genética , Apoptose , Sítios de Ligação , Diferenciação Celular , Linhagem Celular , Proliferação de Células/genética , Reagentes de Ligações Cruzadas , Fator de Iniciação 3 em Eucariotos/química , Humanos , Imunoprecipitação , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos , Fenótipo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Reprodutibilidade dos Testes , Ribonucleosídeos , Ribossomos/metabolismo , Especificidade por Substrato , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA