Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(3): 494-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467800

RESUMO

Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Peptídeos/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
2.
Science ; 382(6671): 719-725, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943924

RESUMO

Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Pectinas , Tubo Polínico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Pectinas/química , Pectinas/metabolismo , Peptídeos/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
3.
Carbohydr Polym ; 254: 117403, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357891

RESUMO

This work is focused on the modification of the interphase zone in short flax fibres / polypropylene (PP) composites by a bio-inspired modification of fibres called "nanostructuration" that uses the adsorption of biomass by-products, i.e. cellulose nanocrystals (CNC) and xyloglucan (XG), to create hierarchical flax fibres. The wettability and interfacial adhesion study reveals a strong decrease in the polar character of CNC modified flax fibres, hence increasing the work of adhesion with PP. Moreover, combining XG/CNC modified interphases with MAPP coupling agent enhances the ultimate mechanical properties of biocomposites with higher tensile strength and work of rupture, and modifies failure mechanisms as revealed by in situ micro-mechanical tensile SEM experiments. Bio-based hierarchical composites inspired by naturally occurring nanostructures open a new path for the development of sustainable composites with enhanced structural properties.


Assuntos
Celulose/química , Linho/química , Glucanos/química , Temperatura Alta , Nanocompostos/química , Nanopartículas/química , Polipropilenos/química , Xilanos/química , Adesivos/química , Adsorção , Resistência à Tração , Água/química , Molhabilidade
4.
Biomacromolecules ; 13(1): 267-75, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22126590

RESUMO

Neutral cellulose nanocrystals dispersed in water were shown in a previous work to stabilize oil/water interfaces and produce Pickering emulsions with outstanding stability, whereas sulfated nanocrystals obtained from cotton did not show interfacial properties. To develop a better understanding of the stabilization mechanism, amphiphilic properties of the nanocrystals were modulated by tuning the surface charge density to investigate emulsifying capability on two sources of cellulose: cotton linters (CCN) and bacterial cellulose (BCN). This charge adjustment made it possible to determine the conditions where a low surface charge density, below 0.03 e/nm(2), remains compatible with emulsification, as well as when assisted by charge screening regardless of the source. This study discusses this ability to stabilize oil-in-water emulsions for cellulose nanocrystals varying in crystalline allomorph, morphology, and hydrolysis processes related to the amphiphilic character of nonhydrophobized cellulose nanocrystal.


Assuntos
Celulose/química , Fibra de Algodão , Emulsões/química , Nanopartículas/química , Óleos/química , Transição de Fase , Nanopartículas/ultraestrutura
5.
C R Biol ; 327(9-10): 935-43, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15587085

RESUMO

This paper opens onto a general discussion on the development of new polymeric materials obtained from lignin blends. The aim is (i) to look for good polymer candidates to obtain a good compatibility with lignins (that is among semi polar polymers), and (ii) to look for good lignin candidates to obtain a good compatibility with polymers showing extreme behaviours (very polar, e.g. starch, or apolar, e.g. polypropylene). The compatibility is simply assessed through the blend morphology, as studied by visible microscopy. The morphology of the blends obtained from semi polar polymers is very sensitive to the variation of the solubility parameters. In a low range of polymer solubility parameters (delta delta = 1 cal cm(-3)), both heterogeneous and homogeneous systems are obtained. These blends could be easily improved by a careful choice in the polymer structure (particularly in the family of biodegradable polyesters); it could be possible also to take advantage of lignin variability to improve the compatibility. Only low molecular weight lignins are compatible with apolar and very polar matrixes. These compounds induce interesting specific properties, and original methods have to be looked for in order to improve their production.


Assuntos
Lignina/química , Polímeros/química , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA