Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(10): e112806, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36994542

RESUMO

Epithelial cells acquire mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) during cancer progression. However, how epithelial cells retain their epithelial traits and prevent malignant transformation is not well understood. Here, we report that the long noncoding RNA LITATS1 (LINC01137, ZC3H12A-DT) is an epithelial gatekeeper in normal epithelial cells and inhibits EMT in breast and non-small cell lung cancer cells. Transcriptome analysis identified LITATS1 as a TGF-ß target gene. LITATS1 expression is reduced in lung adenocarcinoma tissues compared with adjacent normal tissues and correlates with a favorable prognosis in breast and non-small cell lung cancer patients. LITATS1 depletion promotes TGF-ß-induced EMT, migration, and extravasation in cancer cells. Unbiased pathway analysis demonstrated that LITATS1 knockdown potently and selectively potentiates TGF-ß/SMAD signaling. Mechanistically, LITATS1 enhances the polyubiquitination and proteasomal degradation of TGF-ß type I receptor (TßRI). LITATS1 interacts with TßRI and the E3 ligase SMURF2, promoting the cytoplasmic retention of SMURF2. Our findings highlight a protective function of LITATS1 in epithelial integrity maintenance through the attenuation of TGF-ß/SMAD signaling and EMT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Plasticidade Celular , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I
2.
Haematologica ; 107(3): 702-714, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792220

RESUMO

Primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (pcAECyTCL) is a rare variant of cutaneous T-cell lymphoma with an aggressive clinical course and a very poor prognosis. Until now, neither a systematic characterization of genetic alterations driving pcAECyTCL has been performed, nor effective therapeutic regimes for patients have been defined. Here, we present the first highresolution genetic characterization of pcAECyTCL by using wholegenome and RNA sequencing. Our study provides a comprehensive description of genetic alterations (i.e., genomic rearrangements, copy number alterations and small-scale mutations) with pathogenic relevance in this lymphoma, including events that recurrently impact genes with important roles in the cell cycle, chromatin regulation and the JAKSTAT pathway. In particular, we show that mutually exclusive structural alterations involving JAK2 and SH2B3 predominantly underlie pcAECyTCL. In line with the genomic data, transcriptome analysis uncovered upregulation of the cell cycle, JAK2 signaling, NF-κB signaling and a high inflammatory response in this cancer. Functional studies confirmed oncogenicity of JAK2 fusions identified in pcAECyTCL and their sensitivity to JAK inhibitor treatment. Our findings strongly suggest that overactive JAK2 signaling is a central driver of pcAECyTCL, and consequently, patients with this neoplasm would likely benefit from therapy with JAK2 inhibitors such as Food and Drug Adminstration-approved ruxolitinib.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Linfócitos T CD8-Positivos/metabolismo , Humanos , Janus Quinase 2/genética , Linfoma Cutâneo de Células T/genética , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Linfócitos T Citotóxicos/metabolismo
3.
Rheumatology (Oxford) ; 61(7): 3023-3032, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34730803

RESUMO

OBJECTIVE: To gain insight in the expression profile of long non-coding RNAs (lncRNAs) in OA subchondral bone. METHODS: RNA sequencing data of macroscopically preserved and lesioned OA subchondral bone of patients that underwent joint replacement surgery due to OA (N = 22 pairs; 5 hips, 17 knees, Research osteoArthrits Articular Tissue (RAAK study) was run through an in-house pipeline to detect expression of lncRNAs. Differential expression analysis between preserved and lesioned bone was performed. Spearman correlations were calculated between differentially expressed lncRNAs and differentially expressed mRNAs identified previously in the same samples. Primary osteogenic cells were transfected with locked nucleic acid (LNA) GapmeRs targeting AC005165.1 lncRNA, to functionally investigate its potential mRNA targets. RESULTS: In total, 2816 lncRNAs were well-expressed in subchondral bone and we identified 233 lncRNAs exclusively expressed in knee and 307 lncRNAs exclusively in hip. Differential expression analysis, using all samples (N = 22 pairs; 5 hips, 17 knees), resulted in 21 differentially expressed lncRNAs [false discovery rate (FDR) < 0.05, fold change (FC) range 1.19-7.39], including long intergenic non-protein coding RNA (LINC) 1411 (LINC01411, FC = 7.39, FDR = 2.20 × 10-8), AC005165.1 (FC = 0.44, FDR = 2.37 × 10-6) and empty spiracles homeobox 2 opposite strand RNA (EMX2OS, FC = 0.41, FDR = 7.64 × 10-3). Among the differentially expressed lncRNAs, five were also differentially expressed in articular cartilage, including AC005165.1, showing similar direction of effect. Downregulation of AC005165.1 in primary osteogenic cells resulted in consistent downregulation of highly correlated frizzled related protein (FRZB). CONCLUSION: The current study identified a novel lncRNA, AC005165.1, being dysregulated in OA articular cartilage and subchondral bone. Downregulation of AC005165.1 caused a decreased expression of OA risk gene FRZB, an important member of the wnt pathway, suggesting that AC005165.1 could be an attractive potential therapeutic target with effects in articular cartilage and subchondral bone.


Assuntos
Cartilagem Articular , Peptídeos e Proteínas de Sinalização Intracelular , Osteoartrite do Joelho , Osteoartrite , RNA Longo não Codificante , Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Articulação do Joelho/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , RNA Longo não Codificante/genética , RNA Mensageiro/genética
4.
Blood ; 138(24): 2539-2554, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34314480

RESUMO

Sézary syndrome (SS) is an aggressive leukemic form of cutaneous T-cell lymphoma with neoplastic CD4+ T cells present in skin, lymph nodes, and blood. Despite advances in therapy, prognosis remains poor, with a 5-year overall survival of 30%. The immunophenotype of Sézary cells is diverse, which hampers efficient diagnosis, sensitive disease monitoring, and accurate assessment of treatment response. Comprehensive immunophenotypic profiling of Sézary cells with an in-depth analysis of maturation and functional subsets has not been performed thus far. We immunophenotypically profiled 24 patients with SS using standardized and sensitive EuroFlow-based multiparameter flow cytometry. We accurately identified and quantified Sézary cells in blood and performed an in-depth assessment of their phenotypic characteristics in comparison with their normal counterparts in the blood CD4+ T-cell compartment. We observed inter- and intrapatient heterogeneity and phenotypic changes over time. Sézary cells exhibited phenotypes corresponding with classical and nonclassical T helper subsets with different maturation phenotypes. We combined multiparameter flow cytometry analyses with fluorescence-activated cell sorting and performed RNA sequencing studies on purified subsets of malignant Sézary cells and normal CD4+ T cells of the same patients. We confirmed pure monoclonality in Sézary subsets, compared transcriptomes of phenotypically distinct Sézary subsets, and identified novel downregulated genes, most remarkably THEMIS and LAIR1, which discriminate Sézary cells from normal residual CD4+ T cells. Together, these findings further unravel the heterogeneity of Sézary cell subpopulations within and between patients. These new data will support improved blood staging and more accurate disease monitoring.


Assuntos
Síndrome de Sézary/diagnóstico , Neoplasias Cutâneas/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Síndrome de Sézary/patologia , Neoplasias Cutâneas/patologia
5.
Genome Med ; 13(1): 45, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761980

RESUMO

BACKGROUND: Drawing genotype-to-phenotype maps in tumors is of paramount importance for understanding tumor heterogeneity. Assignment of single cells to their tumor clones of origin can be approached by matching the genotypes of the clones to the mutations found in RNA sequencing of the cells. The confidence of the cell-to-clone mapping can be increased by accounting for additional measurements. Follicular lymphoma, a malignancy of mature B cells that continuously acquire mutations in parallel in the exome and in B cell receptor loci, presents a unique opportunity to join exome-derived mutations with B cell receptor sequences as independent sources of evidence for clonal evolution. METHODS: Here, we propose CACTUS, a probabilistic model that leverages the information from an independent genomic clustering of cells and exploits the scarce single cell RNA sequencing data to map single cells to given imperfect genotypes of tumor clones. RESULTS: We apply CACTUS to two follicular lymphoma patient samples, integrating three measurements: whole exome, single-cell RNA, and B cell receptor sequencing. CACTUS outperforms a predecessor model by confidently assigning cells and B cell receptor-based clusters to the tumor clones. CONCLUSIONS: The integration of independent measurements increases model certainty and is the key to improving model performance in the challenging task of charting the genotype-to-phenotype maps in tumors. CACTUS opens the avenue to study the functional implications of tumor heterogeneity, and origins of resistance to targeted therapies. CACTUS is written in R and source code, along with all supporting files, are available on GitHub ( https://github.com/LUMC/CACTUS ).


Assuntos
Perfilação da Expressão Gênica , Genômica , Neoplasias/genética , Análise de Célula Única , Software , Células Clonais , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma Folicular/genética , Modelos Estatísticos , Reprodutibilidade dos Testes , Sequenciamento do Exoma
6.
Arthritis Rheumatol ; 72(11): 1845-1854, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840049

RESUMO

OBJECTIVE: To identify robustly differentially expressed long noncoding RNAs (lncRNAs) with osteoarthritis (OA) pathophysiology in cartilage and to explore potential target messenger RNA (mRNA) by establishing coexpression networks, followed by functional validation. METHODS: RNA sequencing was performed on macroscopically lesioned and preserved OA cartilage from patients who underwent joint replacement surgery due to OA (n = 98). Differential expression analysis was performed on lncRNAs that were annotated in GENCODE and Ensembl databases. To identify potential interactions, correlations were calculated between the identified differentially expressed lncRNAs and the previously reported differentially expressed protein-coding genes in the same samples. Modulation of chondrocyte lncRNA expression was achieved using locked nucleic acid GapmeRs. RESULTS: By applying our in-house pipeline, we identified 5,053 lncRNAs that were robustly expressed, of which 191 were significantly differentially expressed (according to false discovery rate) between lesioned and preserved OA cartilage. Upon integrating mRNA sequencing data, we showed that intergenic and antisense differentially expressed lncRNAs demonstrate high, positive correlations with their respective flanking sense genes. To functionally validate this observation, we selected P3H2-AS1, which was down-regulated in primary chondrocytes, resulting in the down-regulation of P3H2 gene expression levels. As such, we can confirm that P3H2-AS1 regulates its sense gene P3H2. CONCLUSION: By applying an improved detection strategy, robustly differentially expressed lncRNAs in OA cartilage were detected. Integration of these lncRNAs with differential mRNA expression levels in the same samples provided insight into their regulatory networks. Our data indicates that intergenic and antisense lncRNAs play an important role in regulating the pathophysiology of OA.


Assuntos
Cartilagem Articular/metabolismo , Epigênese Genética , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/patologia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , RNA Longo não Codificante/genética
7.
Genes Chromosomes Cancer ; 59(5): 295-308, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31846142

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematological malignancy with a poorly understood pathobiology and no effective therapeutic options. Despite a few recurrent genetic defects (eg, single nucleotide changes, indels, large chromosomal aberrations) have been identified in BPDCN, none are disease-specific, and more importantly, none explain its genesis or clinical behavior. In this study, we performed the first high resolution whole-genome analysis of BPDCN with a special focus on structural genomic alterations by using whole-genome sequencing and RNA sequencing. Our study, the first to characterize the landscape of genomic rearrangements and copy number alterations of BPDCN at nucleotide-level resolution, revealed that IKZF1, a gene encoding a transcription factor required for the differentiation of plasmacytoid dendritic cell precursors, is focally inactivated through recurrent structural alterations in this neoplasm. In concordance with the genomic data, transcriptome analysis revealed that conserved IKZF1 target genes display a loss-of-IKZF1 expression pattern. Furthermore, up-regulation of cellular processes responsible for cell-cell and cell-ECM interactions, which is a hallmark of IKZF1 deficiency, was prominent in BPDCN. Our findings suggest that IKZF1 inactivation plays a central role in the pathobiology of the disease, and consequently, therapeutic approaches directed at reestablishing the function of this gene might be beneficial for patients.


Assuntos
Células Dendríticas/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Fator de Transcrição Ikaros/genética , Plasmocitoma/genética , Plasmocitoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Crise Blástica/genética , Crise Blástica/metabolismo , Crise Blástica/patologia , Adesão Celular/fisiologia , Aberrações Cromossômicas , Bases de Dados Genéticas , Células Dendríticas/metabolismo , Feminino , Neoplasias Hematológicas/metabolismo , Humanos , Fator de Transcrição Ikaros/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Plasmocitoma/metabolismo , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma/métodos
8.
Genes Chromosomes Cancer ; 57(12): 653-664, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144205

RESUMO

Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). Causative genetic alterations in MF are unknown. The low recurrence of pathogenic small-scale mutations (ie, nucleotide substitutions, indels) in the disease, calls for the study of additional aspects of MF genetics. Here, we investigated structural genomic alterations in tumor-stage MF by integrating whole-genome sequencing and RNA-sequencing. Multiple genes with roles in cell physiology (n = 113) and metabolism (n = 92) were found to be impacted by genomic rearrangements, including 47 genes currently implicated in cancer. Fusion transcripts involving genes of interest such as DOT1L, KDM6A, LIFR, TP53, and TP63 were also observed. Additionally, we identified recurrent deletions of genes involved in cell cycle control, chromatin regulation, the JAK-STAT pathway, and the PI-3-K pathway. Remarkably, many of these deletions result from genomic rearrangements. Deletion of tumor suppressors HNRNPK and SOCS1 were the most frequent genetic alterations in MF after deletion of CDKN2A. Notably, SOCS1 deletion could be detected in early-stage MF. In agreement with the observed genomic alterations, transcriptome analysis revealed up-regulation of the cell cycle, JAK-STAT, PI-3-K and developmental pathways. Our results position inactivation of HNRNPK and SOCS1 as potential driver events in MF development.


Assuntos
Deleção de Genes , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Sistema de Sinalização das MAP Quinases , Micose Fungoide/genética , Neoplasias Cutâneas/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Aneuploidia , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Rearranjo Gênico , Humanos , Janus Quinases/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/genética , Micose Fungoide/enzimologia , Polimorfismo de Nucleotídeo Único , RNA Neoplásico , Análise de Sequência de RNA , Neoplasias Cutâneas/enzimologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA