Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biomed Phys Eng Express ; 10(4)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923907

RESUMO

Objective: To summarize our institutional prostate stereotactic body radiation therapy (SBRT) experience using auto beam hold (ABH) technique for intrafractional prostate motion and assess ABH tolerance of 10-millimeter (mm) diameter.Approach: Thirty-two patients (160 fractions) treated using ABH technique between 01/2018 and 03/2021 were analyzed. During treatment, kV images were acquired every 20-degree gantry rotation to visualize 3-4 gold fiducials within prostate to track target motion. If the fiducial center fell outside the tolerance circle (diameter = 10 mm), beam was automatically turned off for reimaging and repositioning. Number of beam holds and couch translational movement magnitudes were recorded. Dosimetric differences from intrafractional motion were calculated by shifting planned isocenter.Main Results: Couch movement magnitude (mean ± SD) in vertical, longitudinal and lateral directions were -0.7 ± 2.5, 1.4 ± 2.9 and -0.1 ± 0.9 mm, respectively. For most fractions (77.5%), no correction was necessary. Number of fractions requiring one, two, or three corrections were 15.6%, 5.6% and 1.3%, respectively. Of the 49 corrections, couch shifts greater than 3 mm were seen primarily in the vertical (31%) and longitudinal (39%) directions; corresponding couch shifts greater than 5 mm occurred in 2% and 6% of cases. Dosimetrically, 100% coverage decreased less than 2% for clinical target volume (CTV) (-1 ± 2%) and less than 10% for PTV (-10 ± 6%). Dose to bladder, bowel and urethra tended to increase (Bladder: ΔD10%:184 ± 466 cGy, ΔD40%:139 ± 241 cGy, Bowel: ΔD1 cm3:54 ± 129 cGy; ΔD5 cm3:44 ± 116 cGy, Urethra: ΔD0.03 cm3:1 ± 1%). Doses to the rectum tended to decrease (Rectum: ΔD1 cm3:-206 ± 564 cGy, ΔD10%:-97 ± 426 cGy; ΔD20%:-50 ± 251 cGy).Significance: With the transition from conventionally fractionated intensity modulated radiation therapy to SBRT for localized prostate cancer treatment, it is imperative to ensure that dose delivery is spatially accurate for appropriate coverage to target volumes and limiting dose to surrounding organs. Intrafractional motion monitoring can be achieved using triggered imaging to image fiducial markers and ABH to allow for reimaging and repositioning for excessive motion.


Assuntos
Movimento , Próstata , Neoplasias da Próstata , Radiometria , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Radiocirurgia/métodos , Próstata/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Marcadores Fiduciais , Movimento (Física) , Fracionamento da Dose de Radiação , Radioterapia de Intensidade Modulada/métodos , Bexiga Urinária , Reto , Órgãos em Risco/efeitos da radiação
2.
Adv Radiat Oncol ; 9(5): 101457, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38550363

RESUMO

Purpose: Stereotactic radiosurgery/radiation therapy (SRS/SRT) increasingly has been used to treat brain metastases. However, the development of distant brain metastases (DBMs) in the untreated brain remains a serious complication. We sought to develop a spatially aware radiomic signature to model the time-to-DBM development in a cohort of patients leveraging pretreatment magnetic resonance imaging (MRI) and radiation therapy treatment planning data including radiation dose distribution maps. Methods and Materials: We retrospectively analyzed a cohort of 105 patients with brain metastases treated by SRS/SRT with pretreatment multiparametric MRI (T1, T1 postcontrast, T2, fluid-attenuated inversion recovery). Three-dimensional radiomic features were extracted from each MRI sequence within 5 isodose regions of interest (ROIs) identified via radiation dose distribution maps and gross target volume (GTV) contours. Clinical features including patient performance status, number of lesions treated, tumor volume, and tumor stage were collected to serve as a baseline for comparison. Cox proportional hazards (CPH) modeling and Kaplan-Meier analysis were used to model time-to-DBM development. Results: CPH models trained using radiomic features achieved a mean concordance index (c-index) of 0.63 (standard deviation [SD], 0.08) compared with a c-index of 0.49 (SD, 0.09) for CPH models trained using clinical factors. A CPH model trained using both radiomic and clinical features achieved a c-index of 0.69 (SD, 0.08). The identified radiomic signature was able to stratify patients into distinct risk groups with statistically significant differences (P = .00007) in time-to-DBM development as measured by log-rank test. Clinical features were unable to do the same. Radiomic features from the peritumoral 50% to 75% isodose ROI and GTV region were most predictive of DBM development. Conclusions: Our results suggest that radiomic features extracted from pretreatment MRI and multiple isodose ROIs can model time-to-DBM development in patients receiving SRS/SRT for brain metastases, outperforming clinical feature baselines. Notably, we believe we are the first to leverage SRS/SRT dose maps for ROI identification and subsequent radiomic analysis of peritumoral and untargeted brain regions using multiparametric MRI. We observed that the peritumoral environment may be implicated in DBM development for SRS/SRT-treated brain metastases. Our preliminary results might enable the identification of patients with predisposition to DBM development and prompt subsequent changes in disease management.

3.
Diagnostics (Basel) ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201380

RESUMO

Accurate differentiation of benign and malignant cervical lymph nodes is important for prognosis and treatment planning in patients with head and neck squamous cell carcinoma. We evaluated the diagnostic performance of magnetic resonance image (MRI) texture analysis and traditional 18F-deoxyglucose positron emission tomography (FDG-PET) features. This retrospective study included 21 patients with head and neck squamous cell carcinoma. We used texture analysis of MRI and FDG-PET features to evaluate 109 histologically confirmed cervical lymph nodes (41 metastatic, 68 benign). Predictive models were evaluated using area under the curve (AUC). Significant differences were observed between benign and malignant cervical lymph nodes for 36 of 41 texture features (p < 0.05). A combination of 22 MRI texture features discriminated benign and malignant nodal disease with AUC, sensitivity, and specificity of 0.952, 92.7%, and 86.7%, which was comparable to maximum short-axis diameter, lymph node morphology, and maximum standard uptake value (SUVmax). The addition of MRI texture features to traditional FDG-PET features differentiated these groups with the greatest AUC, sensitivity, and specificity (0.989, 97.5%, and 94.1%). The addition of the MRI texture feature to lymph node morphology improved nodal assessment specificity from 70.6% to 88.2% among FDG-PET indeterminate lymph nodes. Texture features are useful for differentiating benign and malignant cervical lymph nodes in patients with head and neck squamous cell carcinoma. Lymph node morphology and SUVmax remain accurate tools. Specificity is improved by the addition of MRI texture features among FDG-PET indeterminate lymph nodes. This approach is useful for differentiating benign and malignant cervical lymph nodes.

4.
Vis Comput Ind Biomed Art ; 5(1): 25, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219359

RESUMO

Presence of higher breast density (BD) and persistence over time are risk factors for breast cancer. A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segmentation is desirable. In this study, we aimed to develop a highly reproducible and accurate whole-breast segmentation algorithm for the generation of reproducible BD measures. Three datasets of volunteers from two clinical trials were included. Breast MR images were acquired on 3 T Siemens Biograph mMR, Prisma, and Skyra using 3D Cartesian six-echo GRE sequences with a fat-water separation technique. Two whole-breast segmentation strategies, utilizing image registration and 3D U-Net, were developed. Manual segmentation was performed. A task-based analysis was performed: a previously developed MR-based BD measure, MagDensity, was calculated and assessed using automated and manual segmentation. The mean squared error (MSE) and intraclass correlation coefficient (ICC) between MagDensity were evaluated using the manual segmentation as a reference. The test-retest reproducibility of MagDensity derived from different breast segmentation methods was assessed using the difference between the test and retest measures (Δ2-1), MSE, and ICC. The results showed that MagDensity derived by the registration and deep learning segmentation methods exhibited high concordance with manual segmentation, with ICCs of 0.986 (95%CI: 0.974-0.993) and 0.983 (95%CI: 0.961-0.992), respectively. For test-retest analysis, MagDensity derived using the registration algorithm achieved the smallest MSE of 0.370 and highest ICC of 0.993 (95%CI: 0.982-0.997) when compared to other segmentation methods. In conclusion, the proposed registration and deep learning whole-breast segmentation methods are accurate and reliable for estimating BD. Both methods outperformed a previously developed algorithm and manual segmentation in the test-retest assessment, with the registration exhibiting superior performance for highly reproducible BD measurements.

5.
Vis Comput Ind Biomed Art ; 5(1): 8, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254557

RESUMO

Lymph node involvement increases the risk of breast cancer recurrence. An accurate non-invasive assessment of nodal involvement is valuable in cancer staging, surgical risk, and cost savings. Radiomics has been proposed to pre-operatively predict sentinel lymph node (SLN) status; however, radiomic models are known to be sensitive to acquisition parameters. The purpose of this study was to develop a prediction model for preoperative prediction of SLN metastasis using deep learning-based (DLB) features and compare its predictive performance to state-of-the-art radiomics. Specifically, this study aimed to compare the generalizability of radiomics vs DLB features in an independent test set with dissimilar resolution. Dynamic contrast-enhancement images from 198 patients (67 positive SLNs) were used in this study. Of these subjects, 163 had an in-plane resolution of 0.7 × 0.7 mm2, which were randomly divided into a training set (approximately 67%) and a validation set (approximately 33%). The remaining 35 subjects with a different in-plane resolution (0.78 × 0.78 mm2) were treated as independent testing set for generalizability. Two methods were employed: (1) conventional radiomics (CR), and (2) DLB features which replaced hand-curated features with pre-trained VGG-16 features. The threshold determined using the training set was applied to the independent validation and testing dataset. Same feature reduction, feature selection, model creation procedures were used for both approaches. In the validation set (same resolution as training), the DLB model outperformed the CR model (accuracy 83% vs 80%). Furthermore, in the independent testing set of the dissimilar resolution, the DLB model performed markedly better than the CR model (accuracy 77% vs 71%). The predictive performance of the DLB model outperformed the CR model for this task. More interestingly, these improvements were seen particularly in the independent testing set of dissimilar resolution. This could indicate that DLB features can ultimately result in a more generalizable model.

6.
Acad Radiol ; 29 Suppl 1: S223-S228, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160860

RESUMO

RATIONALE AND OBJECTIVES: Peritumoral features have been suggested to be useful in improving the prediction performance of radiomic models. The aim of this study is to systematically investigate the prediction performance improvement for sentinel lymph node (SLN) status in breast cancer from peritumoral features in radiomic analysis by exploring the effect of peritumoral region sizes. MATERIALS AND METHODS: This retrospective study was performed using dynamic contrast-enhanced MRI scans of 162 breast cancer patients. The effect of peritumoral features was evaluated in a radiomics pipeline for predicting SLN metastasis in breast cancer. Peritumoral regions were generated by dilating the tumor regions-of-interest (ROIs) manually annotated by two expert radiologists, with thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm. The prediction models were established in the training set (∼67% of cases) using the radiomics pipeline with and without peritumoral features derived from different peritumoral thicknesses. The prediction performance was tested in an independent validation set (the remaining ∼33%). RESULTS: For this specific application, the accuracy in the validation set when using the two radiologists' ROIs could be both improved from 0.704 to 0.796 by incorporating peritumoral features. The choice of the peritumoral size could affect the level of improvement. CONCLUSION: This study systematically investigates the effect of peritumoral region sizes in radiomic analysis for prediction performance improvement. The choice of the peritumoral size is dependent on the ROI drawing and would affect the final prediction performance of radiomic models, suggesting that peritumoral features should be optimized in future radiomics studies.


Assuntos
Neoplasias da Mama , Linfonodo Sentinela , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Metástase Linfática/diagnóstico por imagem , Estudos Retrospectivos , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia
7.
Acad Radiol ; 28(2): e44-e53, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32278690

RESUMO

RATIONALE AND OBJECTIVES: Ki-67 is one of the most important biomarkers of breast cancer traditionally measured invasively via immunohistochemistry. In this study, deep learning based radiomics models were established for preoperative prediction of Ki-67 status using multiparametric magnetic resonance imaging (mp-MRI). MATERIALS AND METHODS: Total of 328 eligible patients were retrospectively reviewed [training dataset (n = 230) and a temporal validation dataset (n = 98)]. Deep learning imaging features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast enhanced T1-weighted imaging (T1+C). Transfer learning techniques constructed four feature sets based on the individual three MR sequences and their combination (i.e., mp-MRI). Multilayer perceptron classifiers were trained for final prediction of Ki-67 status. Mann-Whitney U test compared the predictive performance of individual models. RESULTS: The area under curve (AUC) of models based on T2WI,T1+C,DWI and mp-MRI were 0.727, 0.873, 0.674, and 0.888 in the training dataset, respectively, and 0.706, 0.829, 0.643, and 0.875 in the validation dataset, respectively. The predictive performance of mp-MRI classification model in the AUC value was significantly better than that of the individual sequence model (all p< 0.01). CONCLUSION: In clinical practice, a noninvasive approach to improve the performance of radiomics in preoperative prediction of Ki-67 status can be provided by extracting breast cancer specific structural and functional features from mp-MRI images obtained from conventional scanning sequences using the advanced deep learning methods. This could further personalize medicine and computer aided diagnosis.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Mama/diagnóstico por imagem , Humanos , Antígeno Ki-67 , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Estudos Retrospectivos
8.
Clin Breast Cancer ; 20(3): e301-e308, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139272

RESUMO

BACKGROUND: Axillary lymph node status is important for breast cancer staging and treatment planning as the majority of breast cancer metastasis spreads through the axillary lymph nodes. There is currently no reliable noninvasive imaging method to detect nodal metastasis associated with breast cancer. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) data were those from the peak contrast dynamic image from 1.5 Tesla MRI scanners at the pre-neoadjuvant chemotherapy stage. Data consisted of 66 abnormal nodes from 38 patients and 193 normal nodes from 61 patients. Abnormal nodes were those determined by expert radiologist based on 18Fluorodeoxyglucose positron emission tomography images. Normal nodes were those with negative diagnosis of breast cancer. The convolutional neural network consisted of 5 convolutional layers with filters from 16 to 128. Receiver operating characteristic analysis was performed to evaluate prediction performance. For comparison, an expert radiologist also scored the same nodes as normal or abnormal. RESULTS: The convolutional neural network model yielded a specificity of 79.3% ± 5.1%, sensitivity of 92.1% ± 2.9%, positive predictive value of 76.9% ± 4.0%, negative predictive value of 93.3% ± 1.9%, accuracy of 84.8% ± 2.4%, and receiver operating characteristic area under the curve of 0.91 ± 0.02 for the validation data set. These results compared favorably with scoring by radiologists (accuracy of 78%). CONCLUSION: The results are encouraging and suggest that this approach may prove useful for classifying lymph node status on MRI in clinical settings in patients with breast cancer, although additional studies are needed before routine clinical use can be realized. This approach has the potential to ultimately be a noninvasive alternative to lymph node biopsy.


Assuntos
Neoplasias da Mama/patologia , Processamento de Imagem Assistida por Computador/métodos , Metástase Linfática/diagnóstico , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Pontos de Referência Anatômicos , Axila , Neoplasias da Mama/diagnóstico , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Feminino , Fluordesoxiglucose F18/administração & dosagem , Humanos , Tomografia por Emissão de Pósitrons , Curva ROC , Compostos Radiofarmacêuticos/administração & dosagem , Reprodutibilidade dos Testes , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia
9.
Clin Breast Cancer ; 20(1): 68-79.e1, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31327729

RESUMO

INTRODUCTION: Longitudinal monitoring of breast tumor volume over the course of chemotherapy is informative of pathologic response. This study aims to determine whether axillary lymph node (aLN) volume by magnetic resonance imaging (MRI) could augment the prediction accuracy of treatment response to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS: Level-2a curated data from the I-SPY-1 TRIAL (2002-2006) were used. Patients had stage 2 or 3 breast cancer. MRI was acquired pre-, during, and post-NAC. A subset with visible aLNs on MRI was identified (N = 132). Prediction of pathologic complete response (PCR) was made using breast tumor volume changes, nodal volume changes, and combined breast tumor and nodal volume changes with sub-stratification with and without large lymph nodes (3 mL or ∼1.79 cm diameter cutoff). Receiver operating characteristic curve analysis was used to quantify prediction performance. RESULTS: The rate of change of aLN and breast tumor volume were informative of pathologic response, with prediction being most informative early in treatment (area under the curve (AUC), 0.57-0.87) compared with later in treatment (AUC, 0.50-0.75). Larger aLN volume was associated with hormone receptor negativity, with the largest nodal volume for triple negative subtypes. Sub-stratification by node size improved predictive performance, with the best predictive model for large nodes having AUC of 0.87. CONCLUSION: aLN MRI offers clinically relevant information and has the potential to predict treatment response to NAC in patients with breast cancer.


Assuntos
Neoplasias da Mama/terapia , Imageamento por Ressonância Magnética , Terapia Neoadjuvante , Linfonodo Sentinela/diagnóstico por imagem , Carga Tumoral/efeitos dos fármacos , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Axila , Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Quimioterapia Adjuvante/métodos , Ensaios Clínicos Fase II como Assunto , Conjuntos de Dados como Assunto , Feminino , Humanos , Metástase Linfática , Mastectomia , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Linfonodo Sentinela/efeitos dos fármacos , Linfonodo Sentinela/patologia , Resultado do Tratamento
10.
Sci Rep ; 9(1): 1198, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718607

RESUMO

Conventional radiation therapy of brain tumors often produces cognitive deficits, particularly in children. We investigated the potential efficacy of merging Orthovoltage X-ray Minibeams (OXM). It segments the beam into an array of parallel, thin (~0.3 mm), planar beams, called minibeams, which are known from synchrotron x-ray experiments to spare tissues. Furthermore, the slight divergence of the OXM array make the individual minibeams gradually broaden, thus merging with their neighbors at a given tissue depth to produce a solid beam. In this way the proximal tissues, including the cerebral cortex, can be spared. Here we present experimental results with radiochromic films to characterize the method's dosimetry. Furthermore, we present our Monte Carlo simulation results for physical absorbed dose, and a first-order biologic model to predict tissue tolerance. In particular, a 220-kVp orthovoltage beam provides a 5-fold sharper lateral penumbra than a 6-MV x-ray beam. The method can be implemented in arc-scan, which may include volumetric-modulated arc therapy (VMAT). Finally, OXM's low beam energy makes it ideal for tumor-dose enhancement with contrast agents such as iodine or gold nanoparticles, and its low cost, portability, and small room-shielding requirements make it ideal for use in the low-and-middle-income countries.


Assuntos
Radioterapia/métodos , Neoplasias Encefálicas/cirurgia , Simulação por Computador , Ouro , Humanos , Nanopartículas Metálicas , Modelos Biológicos , Método de Monte Carlo , Radiografia/métodos , Radiometria/métodos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Terapia por Raios X/métodos , Raios X
11.
Acad Radiol ; 25(8): 1070-1074, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29395797

RESUMO

RATIONALE AND OBJECTIVES: We aimed to determine if both evidence level (EL) as well as clinical efficacy (CE) of imaging manuscripts have changed over the last 20 years. MATERIALS AND METHODS: With our review of medical literature, Institutional Review Board approval was waived, and no informed consent was required. Using Web of Science, we determined the 10 highest impact factor imaging journals. For each journal the 10 most cited and 10 average cited papers were compared for the following years: 1994, 1998, 2002, 2006, 2010, and 2014. EL was graded using the same criteria as the Journal of Bone and Joint Surgery (Wright et al., 2003). CE was graded using the criteria of Thornbury and Fryback (1991). Statistical software R and package lme4 were used to fit mixed regression models with fixed effects for group, year, and a random effect for journal. RESULTS: EL has improved -0.03 every year on average (P < .001). The more cited papers had better ELs (group effect = -0.23, SE 0.09, P = .011). CE is lower in top cited compared to average cited articles, although the differences were not statistically significant (group effect = -0.14, SE = 0.09, P = .16). CE level increased modestly in both groups over this 20-year time period (0.06 per year, SE = 0.007, P < .001). CONCLUSION: Over the last 20 years, imaging journal articles have improved modestly in quality of evidence, as measured by EL and CE.


Assuntos
Bibliometria , Diagnóstico por Imagem , Medicina Baseada em Evidências/normas , Publicações Periódicas como Assunto/normas , Radiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA