Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 15(4): 362-373.e7, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38554709

RESUMO

Predictive modeling of macromolecular recognition and protein-protein complementarity represents one of the cornerstones of biophysical sciences. However, such models are often hindered by the combinatorial complexity of interactions at the molecular interfaces. Exemplary of this problem is peptide presentation by the highly polymorphic major histocompatibility complex class I (MHC-I) molecule, a principal component of immune recognition. We developed human leukocyte antigen (HLA)-Inception, a deep biophysical convolutional neural network, which integrates molecular electrostatics to capture non-bonded interactions for predicting peptide binding motifs across 5,821 MHC-I alleles. These predictions of generated motifs correlate strongly with experimental peptide binding and presentation data. Beyond molecular interactions, the study demonstrates the application of predicted motifs in analyzing MHC-I allele associations with HIV disease progression and patient response to immune checkpoint inhibitors. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Humanos , Eletricidade Estática , Ligação Proteica , Peptídeos/química , Antígenos HLA/genética , Antígenos HLA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA