Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Endocrinol Metab ; 64(4): 390-401, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32267363

RESUMO

Objective To analyze the morphological and functional characteristics of primary macronodular adrenal hyperplasia (PMAH) nodules carrying or not carrying ARMC5 mutations and the consequences of the presence of mutations in terms of the pattern of macronodule composition and functional state. Subjects and methods The analyses were performed by hematoxylin-eosin staining, immunohistochemistry, microdissection of spongiocyte tissue and RT-qPCR of histological sections from 16 patients diagnosed with PMAH with germline (5) or germline/somatic mutations (5) and without mutations (6) in the ARMC5 gene. Results Hyperplastic nodules were predominantly composed of spongiocytes in mutated and nonmutated sections. ARMC5 mRNA expression in spongiocytes was higher in ARMC5-mutated nodules than in ARMC5-nonmutated nodules, and homogenous ARMC5 protein distribution was observed. The presence of arginine-vasopressin receptor (AVP1AR) and ectopic ACTH production were observed in both cell populations regardless of ARMC5 mutations; the numbers of serotonin receptor (5HT4R)- and proliferating cell nuclear antigen (PCNA)-positive cells were higher in macronodules carrying ARMC5 mutations than in those without mutations. Conclusions Our results suggest that the presence of ARMC5 mutations does not interfere with the pattern of distribution of spongiocytes and compact cells or with the presence of AVP1AR, gastric-inhibitory polypeptide receptor (GIPR) and ectopic ACTH. Nevertheless, the higher numbers of PCNA-positive cells in mutated nodules than in nonmutated nodules suggest that mutated ARMC5 can be related to higher proliferation rates in these cells. In conclusion, our results provide more information about the crosstalk among abnormal GPCRs, ectopic ACTH in steroidogenesis and the ARMC5 gene, which may be relevant in understanding the pathogenesis and diagnosis of patients with PMAH.


Assuntos
Proteínas do Domínio Armadillo/genética , Humanos , Mutação , Antígeno Nuclear de Célula em Proliferação , Receptores 5-HT4 de Serotonina , Serotonina
2.
Endocr Relat Cancer ; 27(4): 221-230, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023208

RESUMO

ARMC5 (Armadillo repeat containing 5 gene) was identified as a new tumor suppressor gene responsible for hereditary adrenocortical tumors and meningiomas. ARMC5 is ubiquitously expressed and encodes a protein which contains a N-terminal Armadillo repeat domain and a C-terminal BTB (Bric-a-Brac, Tramtrack and Broad-complex) domain, both docking platforms for numerous proteins. At present, expression regulation and mechanisms of action of ARMC5 are almost unknown. In this study, we showed that ARMC5 interacts with CUL3 requiring its BTB domain. This interaction leads to ARMC5 ubiquitination and further degradation by the proteasome. ARMC5 alters cell cycle (G1/S phases and cyclin E accumulation) and this effect is blocked by CUL3. Moreover, missense mutants in the BTB domain of ARMC5, identified in patients with multiple adrenocortical tumors, are neither able to interact and be degraded by CUL3/proteasome nor alter cell cycle. These data show a new mechanism of regulation of the ARMC5 protein and open new perspectives in the understanding of its tumor suppressor activity.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas Culina/metabolismo , Humanos , Transfecção , Ubiquitinação
3.
Clinics (Sao Paulo) ; 73(suppl 1): e473s, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30208164

RESUMO

This review summarizes key knowledge regarding the development, growth, and growth disorders of the adrenal cortex from a molecular perspective. The adrenal gland consists of two distinct regions: the cortex and the medulla. During embryological development and transition to the adult adrenal gland, the adrenal cortex acquires three different structural and functional zones. Significant progress has been made in understanding the signaling and molecules involved during adrenal cortex zonation. Equally significant is the knowledge obtained regarding the action of peptide factors involved in the maintenance of zonation of the adrenal cortex, such as peptides derived from proopiomelanocortin processing, adrenocorticotropin and N-terminal proopiomelanocortin. Findings regarding the development, maintenance and growth of the adrenal cortex and the molecular factors involved has improved the scientific understanding of disorders that affect adrenal cortex growth. Hypoplasia, hyperplasia and adrenocortical tumors, including adult and pediatric adrenocortical adenomas and carcinomas, are described together with findings regarding molecular and pathway alterations. Comprehensive genomic analyses of adrenocortical tumors have shown gene expression profiles associated with malignancy as well as methylation alterations and the involvement of miRNAs. These findings provide a new perspective on the diagnosis, therapeutic possibilities and prognosis of adrenocortical disorders.


Assuntos
Doenças do Córtex Suprarrenal/fisiopatologia , Córtex Suprarrenal/crescimento & desenvolvimento , Desenvolvimento Embrionário/fisiologia , Córtex Suprarrenal/embriologia , Córtex Suprarrenal/fisiologia , Humanos
4.
Cancer Cell Int ; 18: 29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507530

RESUMO

BACKGROUND: New drugs for adrenocortical carcinoma (ACC) are needed because most patients undergo rapid disease progression despite surgery and adjuvant therapy with mitotane. In this study, we aimed to investigate the in vitro effects of different chemotherapy drugs, alone or combined with mitotane, on the viability of adrenocortical carcinoma cells. METHODS: Everolimus, sunitinib, zoledronic acid, imatinib and nilotinib cytotoxicity, alone or combined with mitotane were tested on ACC H295R cells in monolayer or spheroid cultures using MTS assays and confocal microscopy. Moreover, the nilotinib effects were investigated in spheroids cultured from patient tumor-derived ACC-T36 cells. RESULTS: Morphological characterization of H295R cell spheroids using histochemistry was performed and showed that dense, homogenously sized, multicellular spheroids were obtained. We observed that sunitinib and nilotinib alone were equally effective in a monolayer preparation, whereas mitotane was the most effective even at a low dose. A combination of sunitinib and mitotane was the most effective treatment, with only 23.8% of cells in the monolayer remaining viable. Spheroid preparations showed resistance to different drugs, although the poor effect produced by mitotane alone was surprising, with a cell viability of 84.6% in comparison with 13.1% in monolayer cells. The most ineffective drugs in spheroid preparations were everolimus, zoledronic acid and imatinib. In both cell types, nilotinib, either alone or in combination with mitotane induced more significant cell viability inhibition in monolayer and spheroid preparations. In addition, the mechanism of nilotinib activity involves the ERK1/2 pathway. CONCLUSION: Taken together, our data identified nilotinib as a cytotoxic drug that combined with ERK inhibitors deserves to be tested as a novel therapy for adrenocortical carcinoma.

5.
Clinics ; 73(supl.1): e473s, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-952822

RESUMO

This review summarizes key knowledge regarding the development, growth, and growth disorders of the adrenal cortex from a molecular perspective. The adrenal gland consists of two distinct regions: the cortex and the medulla. During embryological development and transition to the adult adrenal gland, the adrenal cortex acquires three different structural and functional zones. Significant progress has been made in understanding the signaling and molecules involved during adrenal cortex zonation. Equally significant is the knowledge obtained regarding the action of peptide factors involved in the maintenance of zonation of the adrenal cortex, such as peptides derived from proopiomelanocortin processing, adrenocorticotropin and N-terminal proopiomelanocortin. Findings regarding the development, maintenance and growth of the adrenal cortex and the molecular factors involved has improved the scientific understanding of disorders that affect adrenal cortex growth. Hypoplasia, hyperplasia and adrenocortical tumors, including adult and pediatric adrenocortical adenomas and carcinomas, are described together with findings regarding molecular and pathway alterations. Comprehensive genomic analyses of adrenocortical tumors have shown gene expression profiles associated with malignancy as well as methylation alterations and the involvement of miRNAs. These findings provide a new perspective on the diagnosis, therapeutic possibilities and prognosis of adrenocortical disorders.


Assuntos
Humanos , Córtex Suprarrenal/crescimento & desenvolvimento , Doenças do Córtex Suprarrenal/fisiopatologia , Desenvolvimento Embrionário/fisiologia , Córtex Suprarrenal/embriologia , Córtex Suprarrenal/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-27512387

RESUMO

Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune-Albright syndrome (MAS) and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors, and primary macronodular adrenocortical hyperplasia (PMAH) (1-3). The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear (3). PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of MAS. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production (2, 4). With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion. In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia.

7.
Acta Radiol ; 57(3): 370-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25766729

RESUMO

BACKGROUND: Primary macronodular adrenal hyperplasia (PMAH) is a rare cause of Cushing's syndrome, characterized by functioning adrenal macronodules and variable cortisol production. Recently, we demonstrated a high 18F-FDG uptake in PMAH, an unexpected finding for a benign disorder. PURPOSE: To investigate whether there is a correlation between 18F-FDG high uptake and the expression levels of the glycolytic pathway components GLUT1, HK1, HK2, and HK3 in PMAH. MATERIAL AND METHODS: We selected 12 patients undergoing surgery for PMAH who had preoperatively undergone 18F-FDG PET/CT. mRNA and protein expression of the selected genes were evaluated in the adrenal nodules from patients who underwent surgery through quantitative RT-PCR and by immunohistochemistry, respectively. RESULTS: SUVmax in PMAH was in the range of 3.3-8.9 and the adrenal size was in the range of 3.5-15 cm. A strong correlation between 18F-FDG uptake and largest adrenal diameter was observed in patients with PMAH. However, no correlation between 18F-FDG uptake and GLUT1, HK1, HK2, HK3 mRNA, and protein expression was observed. CONCLUSION: High 18F-FDG uptake is observed in the majority of PMAH cases. However, 18F-FDG uptake in PMAH is independent of the expression levels of GLUT1, HK1, HK2, and HK3. Further investigation is required to elucidate the molecular mechanisms underlying increased 18F-FDG uptake in PMAH.


Assuntos
Síndrome de Cushing/genética , Fluordesoxiglucose F18/farmacocinética , Expressão Gênica/genética , Transportador de Glucose Tipo 1/genética , Hexoquinase/genética , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/metabolismo , Síndrome de Cushing/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/metabolismo , Humanos , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Reação em Cadeia da Polimerase em Tempo Real , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA