Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0256238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411141

RESUMO

S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.


Assuntos
Interleucina-6/genética , Melanoma/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Fator de Transcrição STAT3/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Citoplasma/genética , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Acta Crystallogr D Struct Biol ; 72(Pt 6): 753-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27303795

RESUMO

Structure-based drug discovery is under way to identify and develop small-molecule S100B inhibitors (SBiXs). Such inhibitors have therapeutic potential for treating malignant melanoma, since high levels of S100B downregulate wild-type p53 tumor suppressor function in this cancer. Computational and X-ray crystallographic studies of two S100B-SBiX complexes are described, and both compounds (apomorphine hydrochloride and ethidium bromide) occupy an area of the S100B hydrophobic cleft which is termed site 3. These data also reveal novel protein-inhibitor interactions which can be used in future drug-design studies to improve SBiX affinity and specificity. Of particular interest, apomorphine hydrochloride showed S100B-dependent killing in melanoma cell assays, although the efficacy exceeds its affinity for S100B and implicates possible off-target contributions. Because there are no structural data available for compounds occupying site 3 alone, these studies contribute towards the structure-based approach to targeting S100B by including interactions with residues in site 3 of S100B.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas S100/antagonistas & inibidores , Proteínas S100/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas S100/química
3.
J Med Chem ; 59(2): 592-608, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26727270

RESUMO

The drug pentamidine inhibits calcium-dependent complex formation with p53 ((Ca)S100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of (Ca)S100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the "FF-gate". For symmetric pentamidine analogues ((Ca)S100B·5a, (Ca)S100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue ((Ca)S100B·17), this same channel was open. The (Ca)S100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the "open" form of the "FF-gate" and provides a means to block all three "hot spots" on (Ca)S100B, which will impact next generation (Ca)S100B·p53 inhibitor design.


Assuntos
Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Bovinos , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Pentamidina/análogos & derivados , Pentamidina/química , Pentamidina/farmacologia , Conformação Proteica , Ratos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/efeitos dos fármacos
4.
Biochemistry ; 53(42): 6628-40, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25268459

RESUMO

Elevated levels of the tumor marker S100B are observed in malignant melanoma, and this EF-hand-containing protein was shown to directly bind wild-type (wt) p53 in a Ca(2+)-dependent manner, dissociate the p53 tetramer, and inhibit its tumor suppression functions. Likewise, inhibiting S100B with small interfering RNA (siRNA(S100B)) is sufficient to restore wild-type p53 levels and its downstream gene products and induce the arrest of cell growth and UV-dependent apoptosis in malignant melanoma. Therefore, it is a goal to develop S100B inhibitors (SBiXs) that inhibit the S100B-p53 complex and restore active p53 in this deadly cancer. Using a structure-activity relationship by nuclear magnetic resonance approach (SAR by NMR), three persistent binding pockets are found on S100B, termed sites 1-3. While inhibitors that simultaneously bind sites 2 and 3 are in place, no molecules that simultaneously bind all three persistent sites are available. For this purpose, Cys84 was used in this study as a potential means to bridge sites 1 and 2 because it is located in a small crevice between these two deeper pockets on the protein. Using a fluorescence polarization competition assay, several Cys84-modified S100B complexes were identified and examined further. For five such SBiX-S100B complexes, crystallographic structures confirmed their covalent binding to Cys84 near site 2 and thus present straightforward chemical biology strategies for bridging sites 1 and 3. Importantly, one such compound, SC1982, showed an S100B-dependent death response in assays with WM115 malignant melanoma cells, so it will be particularly useful for the design of SBiX molecules with improved affinity and specificity.


Assuntos
Cálcio/química , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/química , Animais , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Dissulfiram/química , Dissulfiram/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Humanos , Melanoma , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
5.
Anal Biochem ; 418(1): 143-8, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21771574

RESUMO

Efforts toward improving the predictiveness in tier-based approaches to virtual screening (VS) have mainly focused on protein kinases. Despite their significance as drug targets, small molecule kinases have been rarely tested with these approaches. In this paper, we investigate the efficacy of a pharmacophore screening-combined structure-based docking approach on the human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, an emerging target for cancer chemotherapy. Six out of a total 1364 compounds from NCI's Diversity Set II were selected as true actives via throughput screening. Using a database constructed from these compounds, five programs were tested for structure-based docking (SBD) performance, the MOE of which showed the highest enrichments and second highest screening rates. Separately, using the same database, pharmacophore screening was performed, reducing 1364 compounds to 287 with no loss in true actives, yielding an enrichment of 4.75. When SBD was retested with the pharmacophore filtered database, 4 of the 5 SBD programs showed significant improvements to enrichment rates at only 2.5% of the database, with a 7-fold decrease in an average VS time. Our results altogether suggest that combinatorial approaches of VS technologies are easily applicable to small molecule kinases and, moreover, that such methods can decrease the variability associated with single-method SBD approaches.


Assuntos
Bases de Dados Factuais , Ensaios de Triagem em Larga Escala , Modelos Moleculares , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/química , Desenho de Fármacos , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA