Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4247, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144387

RESUMO

Gut microbes programme their metabolism to suit intestinal conditions and convert dietary components into a panel of small molecules that ultimately affect host physiology. To unveil what is behind the effects of key dietary components on microbial functions and the way they modulate host-microbe interaction, we used for the first time a multi-omic approach that goes behind the mere gut phylogenetic composition and provides an overall picture of the functional repertoire in 27 fecal samples from omnivorous, vegan and vegetarian volunteers. Based on our data, vegan and vegetarian diets were associated to the highest abundance of microbial genes/proteins responsible for cell motility, carbohydrate- and protein-hydrolyzing enzymes, transport systems and the synthesis of essential amino acids and vitamins. A positive correlation was observed when intake of fiber and the relative fecal abundance of flagellin were compared. Microbial cells and flagellin extracted from fecal samples of 61 healthy donors modulated the viability of the human (HT29) colon carcinoma cells and the host response through the stimulation of the expression of Toll-like receptor 5, lectin RegIIIα and three interleukins (IL-8, IL-22 and IL-23). Our findings concretize a further and relevant milestone on how the diet may prevent/mitigate disease risk.


Assuntos
Dieta , Microbioma Gastrointestinal , Linhagem Celular Tumoral , Biologia Computacional/métodos , Fezes/microbiologia , Humanos , Redes e Vias Metabólicas , Metagenoma , Metagenômica/métodos , Nitrogênio/metabolismo
2.
Food Chem ; 237: 159-168, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28763982

RESUMO

This study aimed to improve the sensorial quality of sourdough wheat bread by the addition of cell-free enzyme extracts (CFEs) from Lactobacillus sanfranciscensis (SF), Hafnia alvei (HF) and Debaryomyces hansenii (DH). CFEs were suitable sources of peptidases, glutamate dehydrogenase and cystathionine γ-lyase. The concentration of free amino acids (FAA) in the sourdoughs containing CFEs was higher than the control sourdough, produced without addition of CFEs. The community-level catabolic profiles showed that the highest number of carbohydrates, polymers and carboxylic acids were consumed in the SF sourdough. Breads produced with CFEs were characterized by higher specific volume than the control. The use of CFEs impacted on the profile of volatile organic compounds. Overall, positive correlations were found between some key-aroma compounds and enzyme activities/precursor FAA. The SF bread, characterized by highest level of alcohols, received the highest score for aroma and sweetness in the sensory analysis.


Assuntos
Pão , Sistema Livre de Células , Lactobacillus , Paladar , Triticum
3.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500039

RESUMO

The aim of this study was to demonstrate the capacity of probiotic lactobacilli to hydrolyze immunogenic gluten peptides. Eighteen commercial strains of probiotic lactobacilli with highly variable peptidase activity (i.e., aminopeptidase N, iminopeptidase, prolyl endopeptidyl peptidase, tripeptidase, prolidase, prolinase, and dipeptidase), including toward Pro-rich peptides, were tested in this study. Ten probiotic strains were selected on the basis of their specific enzyme activity. When pooled, these 10 strains provided the peptidase portfolio that is required to completely degrade the immunogenic gluten peptides involved in celiac disease (CD). The selected probiotic mixture was able to completely hydrolyze well-known immunogenic epitopes, including the gliadin 33-mer peptide, the peptide spanning residues 57 to 68 of the α9-gliadin (α9-gliadin peptide 57-68), A-gliadin peptide 62-75, and γ-gliadin peptide 62-75. During digestion under simulated gastrointestinal conditions, the pool of 10 selected probiotic lactobacilli strongly hydrolyzed the wheat bread gluten (ca. 18,000 ppm) to less than 10 ppm after 360 min of treatment. As determined by multidimensional chromatography (MDLC) coupled to nanoelectrospray ionization (nano-ESI)-tandem mass spectrometry (MS/MS), no known immunogenic peptides were detected in wheat bread that was digested in the presence of the probiotics. Accordingly, the level of cytokines (interleukin 2 [IL-2], IL-10, and interferon gamma [IFN-γ]) produced by duodenal biopsy specimens from CD patients who consumed wheat bread digested by probiotics was similar to the baseline value (negative control). Probiotics that specifically hydrolyze gluten polypeptides could also be used to hydrolyze immunogenic peptides that contaminate gluten-free products. This could provide a new and safe adjunctive therapy alternative to the gluten-free diet (GFD).IMPORTANCE This study confirmed that probiotic Lactobacillus strains have different enzymatic abilities for hydrolyzing polypeptides, including the Pro-rich epitopes involved in the pathology of CD. Ten lactobacilli with complementary peptidase activities that hydrolyze gluten peptides during simulated gastrointestinal digestion were selected and tested. The results collected showed the potential of probiotic formulas as novel dietary treatments for CD patients.


Assuntos
Doença Celíaca/metabolismo , Trato Gastrointestinal/metabolismo , Glutens/metabolismo , Lactobacillus/metabolismo , Peptídeos/metabolismo , Adulto , Doença Celíaca/tratamento farmacológico , Doença Celíaca/genética , Feminino , Humanos , Hidrólise , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Modelos Biológicos , Probióticos/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA