Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893928

RESUMO

The COVID-19 pandemic has underscored the critical need for effective air filtration systems in healthcare environments to mitigate the spread of viral and bacterial pathogens. This study explores the utilization of copper nanoparticle-coated materials for air filtration, offering both antiviral and antimicrobial properties. Highly uniform spherical copper oxide nanoparticles (~10 nm) were synthesized via a spinning disc reactor and subsequently functionalized with carboxylated ligands to ensure colloidal stability in aqueous solutions. The functionalized copper oxide nanoparticles were applied as antipathogenic coatings on extruded polyethylene and melt-blown polypropylene fibers to assess their efficacy in air filtration applications. Notably, Type IIR medical facemasks incorporating the copper nanoparticle-coated polyethylene fibers demonstrated a >90% reduction in influenza virus and SARS-CoV-2 within 2 h of exposure. Similarly, heating, ventilation, and air conditioning (HVAC) filtration pre- (polyester) and post (polypropylene)-filtration media were functionalised with the copper nanoparticles and exhibited a 99% reduction in various viral and bacterial strains, including SARS-CoV-2, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella enterica, and Escherichia coli. In both cases, this mitigates not only the immediate threat from these pathogens but also the risk of biofouling and secondary risk factors. The assessment of leaching properties confirmed that the copper nanoparticle coatings remained intact on the polymeric fiber surfaces without releasing nanoparticles into the solution or airflow. These findings highlight the potential of nanoparticle-coated materials in developing biocompatible and environmentally friendly air filtration systems for healthcare settings, crucial in combating current and future pandemic threats.

2.
Acta Trop ; 237: 106729, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36280206

RESUMO

We examined the anti-acanthamoebic efficacy of green tea Camellia sinensis solvent extract (SE) or its chemical constituents against Acanthamoeba castellanii by using anti-trophozoite, anti-encystation, and anti-excystation assays. C. sinensis SE (625-5000 µg/mL) inhibited trophozoite replication within 24-72 h. C. sinensis SE exhibited a dose-dependent inhibition of encystation, with a marked cysticidal activity at 2500-5000 µg/mL. Two constituents of C. sinensis, namely epigallocatechin-3-gallate and caffeine, at 100 µM and 200 µM respectively, significantly inhibited both trophozoite replication and encystation. Cytotoxicity analysis showed that 156.25-2500 µg/mL of SE was not toxic to human corneal epithelial cells, while up to 625 µg/mL was not toxic to Madin-Darby canine kidney cells. This study shows the anti-acanthamoebic potential of C. sinensis SE against A. castellanii trophozoites and cysts. Pre-clinical studies are required to elucidate the in vivo efficacy and safety of C. sinensis SE.


Assuntos
Acanthamoeba castellanii , Camellia sinensis , Animais , Cães , Humanos , Cafeína/farmacologia , Solventes/farmacologia , Trofozoítos
3.
Nanoscale Adv ; 4(10): 2242-2249, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133698

RESUMO

Nanometer scale rods of superparamagnetic iron oxide have been encapsulated, along with the anti-cancer therapeutic carnosine, inside porous poly(lactic-co-glycolic acid) microbeads with a uniform morphology, synthesised using microfluidic arrays. The sustained and externally triggered controlled release from these vehicles was demonstrated using a rotating Halbach magnet array, quantified via liquid chromatography, and imaged in situ using magnetic resonance imaging (MRI) and scanning electron microscopy (SEM). In the absence of the external magnetic trigger, the carnosine was found to be released from the polymer in a linear profile; however, over 50% of the drug could be released within 30 minutes of exposure to the rotating magnetic field. In addition, the release of carnosine embedded on the surface of the nano-rods was delayed if it was mixed with the iron oxide nano rods before the encapsulation. These new drug delivery vesicles have the potential to pave the way towards the safe and triggered release of onsite drug delivery, as part of a theragnostic treatment for glioblastoma.

4.
Nanomaterials (Basel) ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34578472

RESUMO

The complete removal of glioblastoma brain tumours is impossible to achieve by surgery alone due to the complex finger-like tentacle structure of the tumour cells and their migration away from the bulk of the tumour at the time of surgery; furthermore, despite aggressive chemotherapy and radiotherapy treatments following surgery, tumour cells continue to grow, leading to the death of patients within 15 months after diagnosis. The naturally occurring carnosine dipeptide has previously demonstrated activity against in vitro cultured glioblastoma cells; however, at natural physiological concentrations, its activity is too low to have a significant effect. Towards realising the full oncological potential of carnosine, the dipeptide was embedded within an externally triggered carrier, comprising a novel nano rod-shaped superparamagnetic iron oxide nanoparticle (ca. 86 × 19 × 11 nm) capped with a branched polyethyleneimine, which released the therapeutic agent in the presence of an external magnetic field. The new nano-carrier was characterized using electron microscopy, dynamic light scattering, elemental analysis, and magnetic resonance imaging techniques. In addition to cytotoxicity studies, the carnosine carrier's effectiveness as a treatment for glioblastoma was screened in vitro using the U87 human glioblastoma astrocytoma cell line. The labile carnosine (100 mM) suppresses both the U87 cells' proliferation and mobility over 48 h, resulting in significant reduction in migration and potential metastasis. Carnosine was found to be fully released from the carrier using only mild hyperthermia conditions (40 °C), facilitating an achievable clinical application of the slow, sustained-release treatment of glioblastoma brain tumours that demonstrates potential to inhibit post-surgery metastasis with the added benefit of non-invasive monitoring via MRI.

5.
Pathogens ; 9(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916863

RESUMO

The anthelmintic effects of extracted coriander oil and five pure essential oil constituents (geraniol, geranyl acetate, eugenol, methyl iso-eugenol, and linalool) were tested, using larval motility assay, on the third-stage larvae (L3s) of Haemonchus contortus, Trichostrongylus axei, Teladorsagia circumcincta, Trichostrongylus colubriformis, Trichostrongylus vitrinus and Cooperia oncophora. Coriander oil and linalool, a major component of tested coriander oil, showed a strong inhibitory efficacy against all species, except C. oncophora with a half maximal inhibitory concentration (IC50) that ranged from 0.56 to 1.41% for the coriander oil and 0.51 to 1.76% for linalool. The coriander oil and linalool combinations conferred a synergistic anthelmintic effect (combination index [CI] <1) on larval motility comparable to positive control (20 mg/mL levamisole) within 24 h (p < 0.05), reduced IC50 values to 0.11-0.49% and induced a considerable structural damage to L3s. Results of the combined treatment were validated by quantitative fluorometric microplate-based assays using Sytox green, propidium iodide and C12-resazurin, which successfully discriminated live/dead larvae. Only Sytox green staining achieved IC50 values comparable to that of the larval motility assay. The cytotoxicity of the combined coriander oil and linalool on Madin-Darby Canine Kidney cells was evaluated using sulforhodamine-B (SRB) assay and showed no significant cytotoxic effect at concentrations < 1%. These results indicate that testing essential oils and their main components may help to find new potential anthelmintic compounds, while at the same time reducing the reliance on synthetic anthelmintics.

6.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973133

RESUMO

Nanoceria (cerium oxide nanoparticles) have been shown to protect human lens epithelial cells (HLECs) from oxidative stress when used at low concentrations. However, there is a lack of understanding about the mechanism of the cytotoxic and genotoxic effects of nanoceria when used at higher concentrations. Here, we investigated the impact of 24-hour exposure to nanoceria in HLECs. Nanoceria's effects on basal reactive oxygen species (ROS), mitochondrial morphology, membrane potential, ATP, genotoxicity, caspase activation and apoptotic hallmarks were investigated. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) studies on isolated mitochondria revealed significant uptake and localization of nanoceria in the mitochondria. At high nanoceria concentrations (400 µg mL-1), intracellular levels of ROS were increased and the HLECs exhibited classical hallmarks of apoptosis. These findings concur with the cells maintaining normal ATP levels necessary to execute the apoptotic process. These results highlight the need for nanoceria dose-effect studies on a range of cells and tissues to identify therapeutic concentrations in vitro or in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Cério/toxicidade , Epitélio/patologia , Cristalino/efeitos dos fármacos , Cristalino/patologia , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/biossíntese , Caspase 3/metabolismo , Caspase 7/metabolismo , Dano ao DNA , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Etilenoglicol/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mutagênicos/toxicidade , Nanopartículas/ultraestrutura
7.
RSC Adv ; 9(29): 16596-16605, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516401

RESUMO

Chronic diseases are rising in incidence and prevalence because of increases in life expectancy in many parts of the world coupled with advances in medicine which manage disease progression, rather than curing and alleviating the causes. Cataract is one such chronic condition. Identifying a therapeutic intervention that is successful in reversing or preventing cataracts may have applications for other chronic diseases of protein misfolding, such as diabetes and Alzheimer's disease as these have similar causation factors, notably oxidative stress and/or glycation. Cerium oxide nanoparticles (nanoceria) which have antioxidant, radioprotective and enzyme-mimetic properties have the potential to lead to an effective non-surgical treatment. However, nanoceria stability in physiological media is poor thus hindering their effective use in biomedical applications. Here we report a highly efficient one-pot synthesis of nanoceria (2-5 nm) coated with ethylene glycol, that is colloidally stable in physiological media and exhibits multiwavelength photoluminescence. The formulation, up to concentrations of 200 µg ml-1, was not toxic to human lens epithelial cells and had no adverse effect on the cellular morphology or proliferation rate. More significantly, these nanoceria showed protective effects against oxidative stress induced by hydrogen peroxide in lens epithelial cells. Electron microscopy studies show the internalization and cytoplasmic localization of the nanoceria was found to be largely in the perinuclear region.

8.
J Immunol Methods ; 344(2): 121-32, 2009 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-19345222

RESUMO

Dendritic cell derived exosomes are able to mediate and modulate immune responses in vivo by semi-direct T cell activation. T cells can eradicate primary, metastatic, relapsed tumours and ameliorate otherwise fatal viral infections. Not surprisingly activation and expansion of T cells has become one of the main focuses for immunotherapy. Using nanotechnology, we have developed targeted and traceable in vivo artificial exosomes by coating liposomes (FDA approved) with an optimized number of MHC Class I/peptide complexes and a selected specific range of ligands for adhesion, early activation, late activation and survival T cell receptors. These targeted artificial exosomes are traceable both in vitro and in vivo via fluorescent and Magnetic Resonance Imaging and facilitate imaging of specific areas by applying localised nuclear magnetic interactions of hydrogens via super paramagnetic labels. Here we show that artificial exosomes activate and expand functional antigen specific T cells at sufficient levels. This novel system has potential basic and clinical applications in immunology where the study of membrane interactions is desired.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Exossomos/metabolismo , Ativação Linfocitária , Animais , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Exossomos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Lipossomos/síntese química , Lipossomos/metabolismo , Imageamento por Ressonância Magnética , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA