Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 64(4): 738-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24958502

RESUMO

Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure.


Assuntos
Estresse do Retículo Endoplasmático , Insuficiência Cardíaca/fisiopatologia , Pulmão/fisiopatologia , eIF-2 Quinase/metabolismo , Animais , Aorta/fisiopatologia , Apoptose , Western Blotting , ATPases Transportadoras de Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Constrição , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Fibrose , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Pulmão/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Fosforilação , Pressão , Retículo Sarcoplasmático/enzimologia , Fator de Transcrição CHOP/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Suporte de Carga , eIF-2 Quinase/genética
2.
J Biol Chem ; 288(50): 35812-23, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24189069

RESUMO

25-Hydroxycholesterol (25OHC) is an enzymatically derived oxidation product of cholesterol that modulates lipid metabolism and immunity. 25OHC is synthesized in response to interferons and exerts broad antiviral activity by as yet poorly characterized mechanisms. To gain further insights into the basis for antiviral activity, we evaluated time-dependent responses of the macrophage lipidome and transcriptome to 25OHC treatment. In addition to altering specific aspects of cholesterol and sphingolipid metabolism, we found that 25OHC activates integrated stress response (ISR) genes and reprograms protein translation. Effects of 25OHC on ISR gene expression were independent of liver X receptors and sterol-response element-binding proteins and instead primarily resulted from activation of the GCN2/eIF2α/ATF4 branch of the ISR pathway. These studies reveal that 25OHC activates the integrated stress response, which may contribute to its antiviral activity.


Assuntos
Hidroxicolesteróis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Ésteres do Colesterol/metabolismo , Perfilação da Expressão Gênica , Hidroxicolesteróis/metabolismo , Receptores X do Fígado , Macrófagos/citologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esfingolipídeos/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/antagonistas & inibidores
3.
PLoS One ; 4(11): e8008, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19956728

RESUMO

BACKGROUND: PERK eIF2alpha kinase is required for the proliferation of the insulin-secreting beta- cells as well as insulin synthesis and secretion. In addition, PERK signaling has been found to be an important factor in determining growth and angiogenesis of specific types of tumors, and was attributed to PERK-dependent regulation of the hypoxic stress response. In this report we examine the role of PERK in regulating proliferation and angiogenesis of transformed beta-cells in the development of insulinomas. METHODOLOGY: The SV40 Large T-antigen (Tag) was genetically introduced into the insulin secreting beta-cells of Perk KO mice under the control of an inducible promoter. Tumor growth and the related parameters of cell proliferation were measured. In late stage insulinomas the degree of vascularity was determined. PRINCIPAL FINDINGS: The formation and growth of insulinomas in Perk-deficient mice was dramatically ablated with much fewer tumors, which averaged 38-fold smaller than seen in wild-type control mice. Beta-cell proliferation was ablated in Perk-deficient mice associated with reduced tumor growth. In the small number of large encapsulated insulinomas that developed in Perk-deficient mice, we found a dramatic reduction in tumor vascularity compared to similar sized insulinomas in wild-type mice. Although insulinoma growth in Perk-deficient mice was largely impaired, beta-cell mass was increased sufficiently by T-antigen induction to rescue the hypoinsulinemia and diabetes in these mice. CONCLUSIONS: We conclude that PERK has two roles in the development of beta-cell insulinomas, first to support rapid cell proliferation during the initial transition to islet hyperplasia and later to promote angiogenesis during the progression to late-stage encapsulated tumors.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/citologia , Insulinoma/metabolismo , eIF-2 Quinase/metabolismo , Animais , Antígenos Virais de Tumores/metabolismo , Glicemia/metabolismo , Peso Corporal , Linhagem Celular Transformada , Proliferação de Células , Camundongos , Camundongos Knockout , Modelos Biológicos , Neovascularização Patológica , Transdução de Sinais
4.
J Biol Chem ; 284(47): 32742-9, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19783659

RESUMO

Asparaginase depletes circulating asparagine and glutamine, activating amino acid deprivation responses (AADR) such as phosphorylation of eukaryotic initiation factor 2 (p-eIF2) leading to increased mRNA levels of asparagine synthetase and CCAAT/enhancer-binding protein beta homologous protein (CHOP) and decreased mammalian target of rapamycin complex 1 (mTORC1) signaling. The objectives of this study were to assess the role of the eIF2 kinases and protein kinase R-like endoplasmic reticulum resident kinase (PERK) in controlling AADR to asparaginase and to compare the effects of asparaginase on mTORC1 to that of rapamycin. In experiment 1, asparaginase increased hepatic p-eIF2 in wild-type mice and mice with a liver-specific PERK deletion but not in GCN2 null mice nor in GCN2-PERK double null livers. In experiment 2, wild-type and GCN2 null mice were treated with asparaginase (3 IU per g of body weight), rapamycin (2 mg per kg of body weight), or both. In wild-type mice, asparaginase but not rapamycin increased p-eIF2, p-ERK1/2, p-Akt, and mRNA levels of asparagine synthetase and CHOP in liver. Asparaginase and rapamycin each inhibited mTORC1 signaling in liver and pancreas but maximally together. In GCN2 null livers, all responses to asparaginase were precluded except CHOP mRNA expression, which remained partially elevated. Interestingly, rapamycin blocked CHOP induction by asparaginase in both wild-type and GCN2 null livers. These results indicate that GCN2 is required for activation of AADR to asparaginase in liver. Rapamycin modifies the hepatic AADR to asparaginase by preventing CHOP induction while maximizing inhibition of mTORC1.


Assuntos
Aminoácidos/química , Antineoplásicos/farmacologia , Asparaginase/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Peso Corporal , Deleção de Genes , Genótipo , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos , Fosforilação , Proteínas , Serina-Treonina Quinases TOR , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição
5.
BMC Cell Biol ; 10: 61, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19732428

RESUMO

BACKGROUND: A deficiency in Perk (EIF2AK3) causes multiple neonatal defects in humans known as the Wolcott Rallison syndrome. Perk KO mice exhibit the same array of defects including permanent neonatal diabetes (PND). PND in mice was previously shown by us to be due to a decrease in beta cell proliferation and insulin secretion. The aim of this study was to determine if acute ablation of PERK in the 832/13 beta cells recapitulates these defects and to identify the primary molecular basis for beta cell dysfunction. RESULTS: The INS1 832/13 transformed rat beta cell line was transduced with a dominant-negative Perk transgene via an adenoviral vector. AdDNPerk-832/13 beta cells exhibited reduced expression of insulin and MafA mRNAs, reduced insulin secretion, and reduced cell proliferation. Although proinsulin content was reduced in AdDNPerk-832/13 beta cells, proinsulin was abnormally retained in the endoplasmic reticulum. A temporal study of the acute ablation of Perk revealed that the earliest defect seen was induced expression of two ER chaperone proteins, GRP78/BiP and ERp72. The oxidized states of ERp72 and ERp57 were also increased suggesting an imbalance in the redox state of the ER. CONCLUSION: Acute ablation of Perk in INS 832/13 beta cells exhibited all of the major defects seen in Perk KO mice and revealed abnormal expression and redox state of key ER chaperone proteins. Dysregulation of ER chaperone/folding enzymes ERp72 and GRP78/BiP occurred early after ablation of PERK function suggesting that changes in ER secretory functions may give rise to the other defects including reduced insulin gene expression, secretion, and cell proliferation.


Assuntos
Proliferação de Células , Retículo Endoplasmático/metabolismo , Insulina/metabolismo , eIF-2 Quinase/metabolismo , Animais , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Biossíntese de Proteínas , Ratos , eIF-2 Quinase/genética
6.
J Cell Physiol ; 217(3): 693-707, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18683826

RESUMO

Loss of function mutations of Perk (eukaryotic translation initiation factor 2 alpha kinase 3) in humans and mice cause severe neonatal developmental defects, including diabetes, growth retardation and multiple skeletal dysplasias. Comprehensive analyses on bone tissue, at the cellular and molecular level in PERK-deficient mice demonstrated that neonatal Perk-/- mice are severely osteopenic, which is caused by a deficiency in the number of mature osteoblasts, impaired osteoblast differentiation, and reduced type I collagen secretion. Impaired differentiation of osteoblasts in Perk KO mice was associated with decreased expression of Runx2 and Osterix, key regulators of osteoblast development. Reduced cell proliferation and reduced expression of key cell cycle factors including cyclin D, cyclin E, cyclin A, Cdc2, and CDK2 occur in parallel with the differentiation defect in mutant osteoblasts. In addition, the trafficking and secretion of type I collagen is compromised as manifested by abnormal retention of procollagen I in the endoplasmic reticulum, and reduced mature collagen production and mineralization. Taken together, these studies identify PERK as a novel regulator of skeletal development and osteoblast biology.


Assuntos
Desenvolvimento Ósseo , Diferenciação Celular , Osteoblastos/citologia , Osteoblastos/enzimologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Doenças Ósseas Metabólicas/enzimologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição Sp7 , Tomografia Computadorizada por Raios X , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , eIF-2 Quinase/deficiência
7.
J Biol Chem ; 283(6): 3465-3475, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18070882

RESUMO

mTORC1 is a complex of proteins that includes the mammalian target of rapamycin (mTOR) and several regulatory proteins. It is activated by a variety of hormones (e.g. insulin) and nutrients (e.g. amino acids) that act to stimulate cell growth and proliferation and repressed by hormones (e.g. glucocorticoids) that act to reduce cell growth. Curiously, mTORC1 signaling is reported to be rapidly (e.g. within 1-2 h) activated by inhibitors of protein synthesis that act on either mRNA translation elongation or gene transcription. However, the basis for the mTORC1 activation has not been satisfactorily delineated. In the present study, mTORC1 signaling was found to be activated in response to inhibition of either the initiation or elongation phases of mRNA translation. Changes in mTORC1 signaling were inversely proportional to alterations in the expression of the mTORC1 repressor, REDD1, but not the expression of TRB3 or TSC2. Moreover the cycloheximide-induced increase in mTORC1 signaling was significantly attenuated in cells lacking REDD1, showing that REDD1 plays an integral role in the response. Finally, the half-life of REDD1 was estimated to be 5 min or less. Overall, the results are consistent with a model in which inhibition of protein synthesis leads to a loss of REDD1 protein because of its rapid degradation, and in part reduced REDD1 expression subsequently leads to de-repression of mTORC1 activity.


Assuntos
Regulação da Expressão Gênica , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuropeptídeos/fisiologia , Fosfoproteínas/fisiologia , Proteínas Quinases/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Cicloeximida/farmacologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Proteínas Quinases/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor
8.
Antioxid Redox Signal ; 9(12): 2357-71, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17760508

RESUMO

Cellular stresses that disrupt the processing of proteins slated for the secretory pathway induce the unfolded protein response (UPR), a regulatory network involving both translational and transcriptional control mechanisms that is designed to expand the secretory pathway and alleviate cellular injury. PERK (PEK/EIF2AK3) mediates the translational control arm of the UPR by enhancing phosphorylation of eIF2. Phosphorylation of eIF2 reduces global protein synthesis, preventing further overload of the secretory pathway and allowing the cell to direct a new pattern of mRNA synthesis that enhances the processing capacity of the endoplasmic reticulum (ER). PERK also directs preferential translation of stress-related transcripts, including that encoding ATF4, a transcriptional activator that contributes to the UPR. Reduced global translation also leads to reduced levels of key regulatory proteins that are subject to rapid turnover, facilitating activation of transcription factors such as NF-B during cellular stress. This review highlights the mechanisms by which PERK monitors and is activated by accumulated misfolded protein in the ER, the processes by which PERK regulates both general and gene-specific translation that is central for the UPR, and the role of PERK in the process of cellular adaptation to ER stress and its impact in disease.


Assuntos
Biossíntese de Proteínas , Desnaturação Proteica , Fator 4 Ativador da Transcrição/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Modelos Biológicos , Fosforilação , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Estresse Fisiológico/metabolismo , eIF-2 Quinase/metabolismo
9.
J Immunol ; 176(11): 6752-61, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16709834

RESUMO

Tryptophan catabolism is a tolerogenic effector system in regulatory T cell function, yet the general mechanisms whereby tryptophan catabolism affects T cell responses remain unclear. We provide evidence that the short-term, combined effects of tryptophan deprivation and tryptophan catabolites result in GCN2 kinase-dependent down-regulation of the TCR zeta-chain in murine CD8+ T cells. TCR zeta down-regulation can be demonstrated in vivo and is associated with an impaired cytotoxic effector function in vitro. The longer-term effects of tryptophan catabolism include the emergence of a regulatory phenotype in naive CD4+CD25- T cells via TGF-beta induction of the forkhead transcription factor Foxp3. Such converted cells appear to be CD25+, CD69-, CD45RBlow, CD62L+, CTLA-4+, BTLAlow and GITR+, and are capable of effective control of diabetogenic T cells when transferred in vivo. Thus, both tryptophan starvation and tryptophan catabolites contribute to establishing a regulatory environment affecting CD8+ as well as CD4+ T cell function, and not only is tryptophan catabolism an effector mechanism of tolerance, but it also results in GCN2-dependent generation of autoimmune-preventive regulatory T cells.


Assuntos
Regulação para Baixo/imunologia , Imunofenotipagem , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/biossíntese , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/biossíntese , Fase de Repouso do Ciclo Celular/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Triptofano/metabolismo , Animais , Antígenos CD , Antígenos de Diferenciação/fisiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Antígeno CTLA-4 , Células Cultivadas , Técnicas de Cocultura , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/metabolismo , Interleucina-10/fisiologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases , Receptores de Interleucina-2/biossíntese , Receptores de Interleucina-2/metabolismo , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Triptofano/fisiologia
10.
Biochem J ; 393(Pt 1): 201-9, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16124869

RESUMO

The eIF2alpha (eukaryotic initiation factor-2alpha) kinase PERK (doublestranded RNA-activated protein kinase-like ER kinase) is essential for the normal function of highly secretory cells in the pancreas and skeletal system, as well as the UPR (unfolded protein response) in mammalian cells. To delineate the regulatory machinery underlying PERK-dependent stress-responses, gene profiling was employed to assess global changes in gene expression in PERK-deficient MEFs (mouse embryonic fibroblasts). Several IE (immediate-early) genes, including c-myc, c-jun, egr-1 (early growth response factor-1), and fra-1 (fos-related antigen-1), displayed PERK-dependent expression in MEFs upon disruption of calcium homoeostasis by inhibiting the ER (endoplasmic reticulum) transmembrane SERCA (sarcoplasmic/ER Ca2+-ATPase) calcium pump. Induction of c-myc and egr-1 by other reagents that elicit the UPR, however, showed variable dependence upon PERK. Induction of c-myc expression by thapsigargin was shown to be linked to key signalling enzymes including PLC (phospholipase C), PI3K (phosphatidylinositol 3-kinase) and p38 MAPK (mitogen-activated protein kinase). Analysis of the phosphorylated status of major components in MAPK signalling pathways indicated that thapsigargin and DTT (dithiothreitol) but not tunicamycin could trigger the PERK-dependent activation of JNK (c-Jun N-terminal kinase) and p38 MAPK. However, activation of JNK and p38 MAPK by non-ER stress stimuli including UV irradiation, anisomycin, and TNF-alpha (tumour necrosis factor-alpha) was found to be independent of PERK. PERK plays a particularly important role in mediating the global cellular response to ER stress that is elicited by the depletion of calcium from the ER. We suggest that this specificity of PERK function in the UPR is an extension of the normal physiological function of PERK to act as a calcium sensor in the ER.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Genes Precoces/genética , Homeostase , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , eIF-2 Quinase/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Fibroblastos/enzimologia , Deleção de Genes , Perfilação da Expressão Gênica , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais , Tapsigargina , eIF-2 Quinase/genética
11.
Mol Cell Biol ; 22(11): 3864-74, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11997520

RESUMO

Phosphorylation of eukaryotic initiation factor 2 alpha (eIF-2 alpha) is typically associated with stress responses and causes a reduction in protein synthesis. However, we found high phosphorylated eIF-2 alpha (eIF-2 alpha[P]) levels in nonstressed pancreata of mice. Administration of glucose stimulated a rapid dephosphorylation of eIF-2 alpha. Among the four eIF-2 alpha kinases present in mammals, PERK is most highly expressed in the pancreas, suggesting that it may be responsible for the high eIF-2 alpha[P] levels found therein. We describe a Perk knockout mutation in mice. Pancreata of Perk(-/-) mice are morphologically and functionally normal at birth, but the islets of Langerhans progressively degenerate, resulting in loss of insulin-secreting beta cells and development of diabetes mellitus, followed later by loss of glucagon-secreting alpha cells. The exocrine pancreas exhibits a reduction in the synthesis of several major digestive enzymes and succumbs to massive apoptosis after the fourth postnatal week. Perk(-/-) mice also exhibit skeletal dysplasias at birth and postnatal growth retardation. Skeletal defects include deficient mineralization, osteoporosis, and abnormal compact bone development. The skeletal and pancreatic defects are associated with defects in the rough endoplasmic reticulum of the major secretory cells that comprise the skeletal system and pancreas. The skeletal, pancreatic, and growth defects are similar to those seen in human Wolcott-Rallison syndrome.


Assuntos
Desenvolvimento Ósseo/fisiologia , Pâncreas/fisiologia , eIF-2 Quinase/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/patologia , Sobrevivência Celular , Colágeno Tipo I/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Retículo Endoplasmático Rugoso/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Expressão Gênica , Glucose/farmacologia , Transtornos do Crescimento/genética , Humanos , Camundongos , Camundongos Knockout , Pâncreas/anormalidades , Fosforilação , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA