Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 616, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773406

RESUMO

BACKGROUND: DNA-Damaged Binding protein 2 (DDB2) is a protein involved in the early step of Nucleotide Excision Repair. Recently, it has been reported that DDB2 is involved in epithelial-to-mesenchymal transition (EMT), key process in tumour invasiveness and metastasis formation. However, its role is not completely known. METHODS: Boyden chamber and cell adhesion assays, and ICELLigence analysis were performed to detect HEK293 adhesion and invasion. Western blotting and gelatine zymography techniques were employed to assess the EMT protein levels and MMP enzymatic activity. Immunofluorescence analysis and pull-down assays facilitated the detection of NF-kB sub-cellular localization and interaction. RESULTS: We have previously demonstrated that the loss of DDB2-PCNA binding favours genome instability, and increases cell proliferation and motility. Here, we have investigated the phenotypic and molecular EMT-like changes after UV DNA damage, in HEK293 clones stably expressing DDB2Wt protein or a mutant form unable to interact with PCNA (DDB2PCNA-), as well as in HeLa cells transiently expressing the same DDB2 constructs. Cells expressing DDB2PCNA- showed morphological modifications along with a reduced expression of E-cadherin, an increased activity of MMP-9 and an improved ability to migrate, in concomitance with a significant upregulation of EMT-associated Transcription Factors (TFs), whose expression has been reported to favour tumour invasion. We observed a higher expression of c-Myc oncogene, NF-kB, both regulating cell proliferation and metastatic process, as well as ZEB1, a TF significantly associated with tumorigenic potential and cell migratory ability. Interestingly, a novel interaction of DDB2 with NF-kB was detected and found to be increased in cells expressing the DDB2PCNA-, suggesting a direct modulation of NF-kB by DDB2. CONCLUSION: These results highlight the role of DDB2-PCNA interaction in counteracting EMT since DDB2PCNA- protein induces in HEK293 transformed cells a gain of function contributing to the acquisition of a more aggressive phenotype.


Assuntos
Movimento Celular , Dano ao DNA , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , NF-kappa B , Antígeno Nuclear de Célula em Proliferação , Raios Ultravioleta , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , NF-kappa B/metabolismo , Raios Ultravioleta/efeitos adversos , Células HEK293 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Células HeLa , Transdução de Sinais , Adesão Celular , Proliferação de Células , Ligação Proteica , Mutação
2.
Carcinogenesis ; 41(3): 257-266, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31504229

RESUMO

Rubinstein-Taybi syndrome (RSTS) is an autosomal-dominant disorder characterized by intellectual disability, skeletal abnormalities, growth deficiency and an increased risk of tumors. RSTS is predominantly caused by mutations in CREBBP or EP300 genes encoding for CBP and p300 proteins, two lysine acetyl-transferases (KAT) playing a key role in transcription, cell proliferation and DNA repair. However, the efficiency of these processes in RSTS cells is still largely unknown. Here, we have investigated whether pathways involved in the maintenance of genome stability are affected in lymphoblastoid cell lines (LCLs) obtained from RSTS patients with mutations in CREBBP or in EP300 genes. We report that RSTS LCLs with mutations affecting CBP or p300 protein levels or KAT activity, are more sensitive to oxidative DNA damage and exhibit defective base excision repair (BER). We have found reduced OGG1 DNA glycosylase activity in RSTS compared to control cell extracts, and concomitant lower OGG1 acetylation levels, thereby impairing the initiation of the BER process. In addition, we report reduced acetylation of other BER factors, such as DNA polymerase ß and Proliferating Cell Nuclear Antigen (PCNA), together with acetylation of histone H3. We also show that complementation of CBP or p300 partially reversed RSTS cell sensitivity to DNA damage. These results disclose a mechanism of defective DNA repair as a source of genome instability in RSTS cells.


Assuntos
Proteína de Ligação a CREB/genética , DNA Glicosilases/genética , Proteína p300 Associada a E1A/genética , Síndrome de Rubinstein-Taybi/genética , Acetilação , Carcinogênese/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Mutação , Estresse Oxidativo/genética , Fenótipo , Síndrome de Rubinstein-Taybi/patologia
3.
BMC Cancer ; 19(1): 1013, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664956

RESUMO

BACKGROUND: The Host Cell Reactivation assay (HCR) allows studying the DNA repair capability in different types of human cells. This assay was carried out to assess the ability in removing UV-lesions from DNA, thus verifying NER efficiency. Previously we have shown that DDB2, a protein involved in the Global Genome Repair, interacts directly with PCNA and, in human cells, the loss of this interaction affects DNA repair machinery. In addition, a mutant form unable to interact with PCNA (DDB2PCNA-), has shown a reduced ability to interact with a UV-damaged DNA plasmid in vitro. METHODS: In this work, we have investigated whether DDB2 protein may influence the repair of a UV-damaged DNA plasmid into the cellular environment by applying the HCR method. To this end, human kidney 293 stable clones, expressing DDB2Wt or DDB2PCNA-, were co-transfected with pmRFP-N2 and UV-irradiated pEGFP-reported plasmids. Moreover, the co-localization between DDB2 proteins and different NER factors recruited at DNA damaged sites was analysed by immunofluorescence and confocal microscopy. RESULTS: The results have shown that DDB2Wt recognize and repair the UV-induced lesions in plasmidic DNA transfected in the cells, whereas a delay in these processes were observed in the presence of DDB2PCNA-, as also confirmed by the different extent of co-localization of DDB2Wt and some NER proteins (such as XPG), vs the DDB2 mutant form. CONCLUSION: The HCR confirms itself as a very helpful approach to assess in the cellular context the effect of expressing mutant vs Wt NER proteins on the DNA damage response. Loss of interaction of DDB2 and PCNA affects negatively DNA repair efficiency.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transfecção/métodos , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Endonucleases/metabolismo , Instabilidade Genômica/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Proteínas Mutantes/genética , Mutação , Proteínas Nucleares/metabolismo , Plasmídeos/genética , Plasmídeos/efeitos da radiação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Raios Ultravioleta/efeitos adversos , Proteína Vermelha Fluorescente
4.
DNA Repair (Amst) ; 51: 79-84, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28185850

RESUMO

Among different DNA repair processes that cells use to face with DNA damage, nucleotide excision repair (NER) is particularly important for the removal of a high variety of lesions, including those generated by some antitumor drugs. A number of factors participating in NER, such as the TFIIH complex and the endonuclease XPG are also involved in basal processes, e.g. transcription. For this reason, localization of these factors at DNA damage sites may be difficult. Here we have applied a mild digestion of chromatin with DNase I to improve the in situ extraction necessary to detect chromatin-bound proteins by immunofluorescence. We have compared this method with different extraction protocols and investigated its application on different cell types, and with different antibodies. Our results show that a short DNase I treatment before the immunoreaction, enhances the fluorescence signal of NER proteins, such as XPG, DDB2 and XPC. In addition, our findings indicate that the antibody choice is a critical factor for accurate localization of DNA repair proteins at DNA damage sites. In conclusion, a mild DNA digestion with DNase I improves the immunofluorescence detection of the recruitment of NER factors at local DNA damage sites by enhancing accessibility to the antibodies, independently of the cell type.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/análise , Reparo do DNA , Imunofluorescência/métodos , Raios Ultravioleta , Cromatina/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Desoxirribonuclease I/metabolismo , Humanos , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo
5.
PLoS One ; 11(1): e0146031, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26730949

RESUMO

The cell cycle inhibitor p21CDKN1A was previously found to interact directly with DNA nick-sensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro. Using model photoreactive BER substrates containing single-strand breaks, we found that full-length recombinant GST-tagged p21 but not a C-terminal domain truncated form of p21 was able to stimulate the PARP-1 binding to BER intermediates with no significant influence on the catalytic activity of PARP-1. In addition, we investigate whether the activation of PARP-1 through poly(ADP-ribose) (PAR) synthesis, is required for its interaction with p21. We have found that in human fibroblasts and in HeLa cells treated with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the interaction of p21 with PARP-1 was greatly dependent on PAR synthesis. In fact, an anti-PAR antibody was able to co-immunoprecipitate p21 and PARP-1 from extracts of MNNG-treated cells, while blocking PAR synthesis with the PARP-1 inhibitor Olaparib, drastically reduced the amount of p21 co-immunoprecipitated by a PARP-1 antibody. Our results provide the first evidence that p21 can stimulate the binding of PARP-1 to DNA repair intermediates, and that this cooperation requires PAR synthesis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quebras de DNA de Cadeia Simples , Reparo do DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Western Blotting , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Metilnitronitrosoguanidina/farmacologia , Microscopia de Fluorescência , Mutação , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica
6.
Cell Cycle ; 14(24): 3920-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697842

RESUMO

DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
7.
Arch Toxicol ; 89(2): 155-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25514883

RESUMO

The cell cycle inhibitor p21(CDKN1A) is a protein playing multiple roles not only in the DNA damage response, but also in many cellular processes during unperturbed cell growth. The main, well-known function of p21 is to arrest cell cycle progression by inhibiting the activity of cyclin-dependent kinases. In addition, p21 is involved in the regulation of transcription, apoptosis, DNA repair, as well as cell motility. However, p21 appears to a have a dual-face behavior because, in addition to its tumor suppressor functions, it may act as an oncogene, depending on the cell type and on the cellular localization. As a biomarker of the cell response to different toxic stimuli, p21 expression and functions have been analyzed in an impressive number of studies investigating the activity of several types of chemicals, in order to determine their possible harmful effects on human cells. Here, we review these studies in order to highlight the different roles p21 may play in the cell response to chemical exposure and to better evaluate the information provided by this biomarker.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Animais , Apoptose , Arsênio/toxicidade , Cádmio/toxicidade , Ciclo Celular , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Reparo do DNA , Humanos , Micotoxinas/toxicidade , Nanopartículas/toxicidade , Praguicidas/toxicidade , Transcrição Gênica
8.
J Photochem Photobiol B ; 140: 57-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25105482

RESUMO

The photobehavior of ciprofloxacin, lomefloxacin and ofloxacin fluoroquinolones was investigated using several in vitro methods to assess their cytotoxic, antiproliferative, and genotoxic potential against two human cancer cell lines. We focused our attention on the possible relationship between their chemical structure, O2 partial pressure and photobiological activity on cancer cells. The three molecules share the main features of most fluoroquinolones, a fluorine in 6 and a piperazino group in 7, but differ at the key position 8, unsubstituted in ciprofloxacin, a fluorine in lomefloxacin and an alkoxy group in ofloxacin. Studies in solution show that ofloxacin has a low photoreactivity; lomefloxacin reacts via aryl cation, ciprofloxacin reacts but not via the cation. In our experiments, ciprofloxacin and lomefloxacin showed a high and comparable potential for photodamaging cells and DNA. Lomefloxacin appeared the most efficient molecule in hypoxia, acting mainly against tumour cell proliferation and generating DNA plasmid photocleavage. Although our results do not directly provide evidence that a carbocation is involved in photodamage induced by lomefloxacin, our data strongly support this hypothesis. This may lead to new and more efficient anti-tumour drugs involving a cation in their mechanism of action. This latter acting independently of oxygen, can target hypoxic tumour tissue.


Assuntos
Fluoroquinolonas/química , Oxigênio/química , Fármacos Fotossensibilizantes/química , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Hipóxia Celular , Linhagem Celular Tumoral , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Fluoroquinolonas/toxicidade , Células HeLa , Humanos , Fármacos Fotossensibilizantes/toxicidade , Plasmídeos/efeitos dos fármacos , Plasmídeos/metabolismo , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Relação Estrutura-Atividade , Raios Ultravioleta
9.
DNA Repair (Amst) ; 9(6): 627-35, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20303835

RESUMO

The cell cycle inhibitor p21(CDKN1A) has been shown to participate in nucleotide excision repair by interacting with PCNA. Here we have investigated whether p21 plays a role in base excision repair (BER), by analyzing p21 interactions with BER factors, and by assessing the response of p21(-/-) human fibroblasts to DNA damage induced by alkylating agents. Absence of p21 protein resulted in a higher sensitivity to alkylation-induced DNA damage, as indicated by reduced clonogenic efficiency, defective DNA repair (assessed by the comet test), and by persistence of histone H2AX phosphorylation. To elucidate the mechanisms at the basis of the function of p21 in BER, we focused on its interaction with poly(ADP-ribose) polymerase-1 (PARP-1), an important player in this repair process. p21 was found to bind the automodification/DNA binding domain of PARP-1, although some interaction occurred also with the catalytic domain after DNA damage. This association was necessary to regulate PARP-1 activity since poly(ADP-ribosylation) induced by DNA damage was higher in p21(-/-) human fibroblasts than in parental p21(+/+) cells, and in primary fibroblasts after p21 knock-down by RNA interference. Concomitantly, recruitment of PARP-1 and PCNA to damaged DNA was greater in p21(-/-) than in p21(+/+) fibroblasts. This accumulation resulted in persistent interaction of PARP-1 with BER factors, such as XRCC1 and DNA polymerase beta, suggesting that prolonged association reduced the DNA repair efficiency. These results indicate that p21 regulates the interaction between PARP-1 and BER factors, to promote efficient DNA repair.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Adenosina Difosfato Ribose/biossíntese , Alquilantes/farmacologia , Animais , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA/genética , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Deleção de Genes , Células HeLa , Histonas/metabolismo , Humanos , Metilnitronitrosoguanidina/farmacologia , Camundongos , Fosforilação , Poli(ADP-Ribose) Polimerase-1
10.
Cell Cycle ; 8(1): 105-14, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19106607

RESUMO

The cell cycle inhibitor p21(CDKN1A) induces cell cycle arrest under different conditions, including senescence and terminal differentiation. Still debated is its involvement in the reversible transition from proliferation to a non-dividing quiescent state (G(0)), in which a significant role has been attributed to cell cycle inhibitor p27(CDKN1B). Here we provide evidence showing that high p21 protein levels are necessary to enter and maintain the quiescence state following contact inhibition and growth factor withdrawal. In fact, entry into quiescence was impaired, both in human fibroblasts in which p21 gene has been deleted, or protein expression knocked-down by RNA interference. Importantly, in the absence of p21, human fibroblasts activate a DNA damage-like signalling pathway, as shown by phosphorylation of histone H2AX and Chk1 proteins. In addition, we show that in the absence of p21, checkpoint is activated by an unscheduled entry into S phase, with a reduced efficiency in DNA maturation, in the presence of high c-myc protein levels. These results highlight the role of p21 in counteracting inappropriate proliferation stimuli for genome stability maintenance.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Dano ao DNA , Fibroblastos/citologia , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , DNA/biossíntese , Replicação do DNA , Fibroblastos/enzimologia , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Soro , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
11.
Cell Cycle ; 5(18): 2153-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16969115

RESUMO

The cyclin-dependent kinase (CDK) inhibitor roscovitine is under evaluation in clinical trials for its antiproliferative properties. Roscovitine arrests cell cycle progression in G(1) and in G(2) phase by inhibiting CDK2 and CDK1, and possibly CDK7 and CDK9. However, the effects of CDK2 inhibition in S-phase cells have been not fully investigated. Here, we show that a short-term treatment with roscovitine is sufficient to inhibit DNA synthesis, and to activate a DNA damage checkpoint response, as indicated by phosphorylation of p53-Ser15, replication protein A, and histone H2AX. Analysis of DNA replication proteins loaded onto DNA during S phase showed that the amount of proliferating cell nuclear antigen (PCNA), a cofactor of DNA replication enzymes, was significantly reduced by roscovitine. In contrast, chromatin-bound levels of DNA polymerase delta, DNA ligase I and CDK2, were stabilized. Checkpoint inhibition with caffeine could rescue PCNA disassembly only partially, pointing to additional effects due to CDK2 inhibition and the presence of replication stress. These results suggest that in S-phase cells, roscovitine induces checkpoint-dependent and -independent effects, leading to stabilization of replication forks and an uncoupling between PCNA and PCNA-interacting proteins.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Genes cdc/efeitos dos fármacos , Purinas/farmacologia , Células Cultivadas , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , DNA/biossíntese , Dano ao DNA/genética , Replicação do DNA/genética , Genes cdc/fisiologia , Histonas/metabolismo , Humanos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína de Replicação A/metabolismo , Roscovitina , Fase S/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
12.
Histochem Cell Biol ; 121(5): 377-81, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15133678

RESUMO

The cyclin-dependent kinase (CDK) inhibitor p21CDKN1A is known to induce cell cycle arrest by inhibiting CDK activity and by interfering with DNA replication through binding to proliferating cell nuclear antigen. Although the molecular mechanisms have been elucidated, the temporal dynamics, as well as the intracellular sites of the activity of p21 bound to cyclin/CDK complexes during cell cycle arrest, have not been fully investigated. In this study we have induced the expression of p21CDKN1A fused to green fluorescent protein (GFP) in HeLa cells, in order to visualize the intracellular localization of the inhibitor during the cell cycle arrest. We show that p21-GFP is preferentially expressed in association with cyclin E in cells arrested in G1 phase, and with cyclin A more than with cyclin B1 in cells arrested in the G2/M compartment. In addition, we show for the first time that p21-GFP colocalizes with cyclin E in the nucleolus of HeLa cells during the G1 phase arrest.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Ciclina A/análise , Ciclina A/metabolismo , Ciclina B/análise , Ciclina B/metabolismo , Ciclina B1 , Ciclina E/análise , Ciclina E/metabolismo , Inibidor de Quinase Dependente de Ciclina p21 , Citometria de Fluxo , Fase G1/fisiologia , Fase G2/fisiologia , Expressão Gênica , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fase S/fisiologia , Transfecção
13.
Carcinogenesis ; 25(8): 1427-33, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15016660

RESUMO

To investigate the mechanistic basis for the biological properties of anthocyanins, two aglycone anthocyanins [delphinidin (DY) and cyanidin (CY)] were used to examine their effects on cell cycle progression and on induction of apoptosis in human cancer cells (uterine carcinoma and colon adenocarcinoma cells) and in normal human fibroblasts. These compounds differ in the number and position of hydroxyl groups on the beta ring in the molecular structure. Cellular uptake of anthocyanins was confirmed by HPLC analysis and no metabolites were detected. The clonogenic assay showed that CY induces a dose-dependent growth inhibitory effect only in fibroblasts. This effect was confirmed by flow cytometric analysis, showing a significant reduction of cells in S phase. In contrast, DP inhibited cell growth in normal and tumour cell lines. This event is accompanied in fibroblasts by an accumulation of cells in the S phase suggesting a block in the transition from S to G2 phase. On the other hand, in tumour cell lines we observed a reduction of cells in G1 phase, paralleled by the appearance of a fraction of cells with a hypodiploid DNA content, thus demonstrating an apoptotic effect by DP. The occurrence of apoptosis induced by DP was confirmed by morphological and biochemical features, including nuclear condensation and fragmentation, annexin V staining, DNA laddering and poly(ADP-ribose) polymerase-1-proteolysis. Furthermore, the mitochondrial membrane potential of apoptotic cells after treatment with DP was significantly lost. The different effects exerted by DP as compared with CY suggest that the presence of the three hydroxyl groups on the beta ring in the molecular structure of DP may be important for its greater biological activity.


Assuntos
Antocianinas/farmacologia , Apoptose , Anexina A5/farmacologia , Antocianinas/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Corantes/farmacologia , DNA/metabolismo , Fragmentação do DNA , Fibroblastos/metabolismo , Citometria de Fluxo , Fase G1 , Fase G2 , Células HeLa , Humanos , Potenciais da Membrana , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Propídio/farmacologia , Fase S , Fatores de Tempo
14.
Exp Cell Res ; 293(2): 357-67, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14729473

RESUMO

Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.


Assuntos
Ciclo Celular/genética , DNA Ligases/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA/genética , DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Anticorpos/metabolismo , Anticorpos/farmacologia , Sítios de Ligação/fisiologia , Quinases relacionadas a CDC2 e CDC28/genética , Quinases relacionadas a CDC2 e CDC28/metabolismo , Domínio Catalítico/genética , Linhagem Celular , Ciclina A/genética , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Polimerase III/genética , Desoxirribonucleases/metabolismo , Feto , Humanos , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/genética
15.
Cell Cycle ; 2(6): 596-603, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14504476

RESUMO

The ability of the cyclin-dependent kinase (CDK) inhibitor p21CDKN1A to interact with PCNA recruited to DNA replication sites was investigated to elucidate the relevance of this interaction in cell cycle arrest. To this end, expression of p21 protein fused to green fluorescent protein (GFP) was induced in HeLa cells. G1 phase cell cycle arrest induced by p21GFP occurred also at the G1/S transition, as shown by cyclin A immunostaining of GFP-positive cells. Confocal microscopy analysis and co-immunoprecipitation studies showed that p21GFP co-localized and interacted with chromatin-bound PCNA and CDK2. GFP-p21 mutant forms unable to bind to PCNA (p21PCNA-) or CDK (p21CDK-) induced cell cycle arrest, although immunoprecipitation experiments showed these mutants to be unstable. Expression of HA-tagged p21wt or mutant proteins confirmed the ability of both mutants to arrest cell cycle. p21(wt)HA and p21CDK-HA, but not p21PCNA-, co-localized and co-immunoprecipitated with chromatin-bound PCNA. Association of p21 to chromatin-bound PCNA resulted in the loss of interaction with the p125 catalytic subunit of DNA polymerase delta (pol delta). These results suggest that in vivo p21 does not interfere with loading of PCNA at DNA replication sites, but prevents, or displaces subsequent binding of pol delta to PCNA at the G1/S phase transition.


Assuntos
Ciclinas/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA , Fase G1/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fase S/fisiologia , Quinases relacionadas a CDC2 e CDC28/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA