Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 104(4-5): 451-465, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32803477

RESUMO

KEY MESSAGE: The first biochemical characterization of a chloroplastic disaggregase is reported (Arabidopsis thaliana ClpB3). ClpB3 oligomerizes into active hexamers that resolubilize aggregated substrates using ATP and without the aid of partners. Disaggregases from the Hsp100/Clp family are a type of molecular chaperones involved in disassembling protein aggregates. Plant cells are uniquely endowed with ClpB proteins in the cytosol, mitochondria and chloroplasts. Chloroplastic ClpB proteins have been implicated in key processes like the unfolded protein response; however, they have not been studied in detail. In this study, we explored the biochemical properties of a chloroplastic ClpB disaggregase, in particular, ClpB3 from A. thaliana. ClpB3 was produced recombinantly in Escherichia coli and affinity-purified to near homogeneity. ClpB3 forms a hexameric complex in the presence of MgATP and displays intrinsic ATPase activity. We demonstrate that ClpB3 has ATPase activity in a wide range of pH and temperature values and is particularly resistant to heat. ClpB3 specifically targets unstructured polypeptides and mediates the reactivation of heat-denatured model substrates without the aid of the Hsp70 system. Overall, this work represents the first in-depth biochemical description of a ClpB protein from plants and strongly supports its role as the putative disaggregase chaperone in chloroplasts.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Magnésio/metabolismo , Chaperonas Moleculares/metabolismo , Desnaturação Proteica , Temperatura
2.
Protein Sci ; 28(4): 800-807, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653276

RESUMO

The production of recombinant proteins in bacteria has increased significantly in recent years, becoming a common tool for both research and the industrial production of proteins. One of the requirements of this methodology is to obtain the desired protein without contaminants. However, this goal cannot always be readily achieved. Multiple strategies have been developed to improve the quality of the desired protein product. Nevertheless, contamination with molecular chaperones is one of the recalcitrant problems that still affects the quality of the obtained proteins. The ability of chaperones to bind to unfolded proteins or to regions where the polypeptide chain is exposed make the removal of the contamination during purification challenging to achieve. This work aimed to develop a strategy to remove contaminating DnaK, one of the homologous Hsp70 molecular chaperones found in Escherichia coli, from purified recombinant proteins. For this purpose, we developed a methodology that captures the DnaK from the contaminating proteins by co-incubation with a GST-cleanser protein that has free functional binding sites for the chaperone. The cleanser protein can then be easily removed together with the captured DnaK. Here, we demonstrated the utility of our system by decontaminating a Histidine-tagged recombinant protein in a batch process. The addition of the GST-cleanser protein in the presence of ATP-Mg eliminates the DnaK contamination substantially. Thus, our decontaminant strategy results versatile and straightforward and can be applied to proteins obtained with different expression and purifications systems as well as to small samples or large volume preparations.


Assuntos
Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/química , Proteínas de Choque Térmico HSP70/isolamento & purificação , Proteínas Recombinantes/química , Sítios de Ligação , Western Blotting , Eletroforese em Gel de Poliacrilamida , Proteínas Imobilizadas/química
3.
PLoS One ; 12(9): e0184617, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886198

RESUMO

Cell penetrating peptides, also known as protein transduction domains, have the capacity to ubiquitously cross cellular membranes carrying many different cargos with negligible cytotoxicity. As a result, they have emerged as a powerful tool for macromolecular delivery-based therapies. In this study, catalytically active bacterial Ferredoxin-NADP+ reductase (LepFNR) and Heme oxygenase (LepHO) fused to the HIV TAT-derived protein transduction peptide (TAT) were efficiently transduced to neuroblastoma SHSY-5Y cells. Proteins entered the cells through an endocytic pathway showing a time/concentration dependent mechanism that was clearly modulated by the nature of the cargo protein. Since ferredoxin-NADP+ reductases and heme oxygenases have been implicated in mechanisms of oxidative stress defense, neuroblastoma cells simultaneously transduced with TAT-LepFNR and TAT-LepHO were challenged by H2O2 incubations to judge the cytoprotective power of these bacterial enzymes. Accumulation of reactive oxygen species was significantly reduced in these transduced neuronal cells. Moreover, measurements of metabolic viability, membrane integrity, and cell survival indicated that these cells showed a better tolerance to oxidative stress. Our results open the possibility for the application of transducible active redox proteins to overcome the damage elicited by oxidative stress in cells and tissues.


Assuntos
Transdução Genética/métodos , Proteínas de Bactérias/metabolismo , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Imunofluorescência , Humanos , Microscopia Confocal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Temperatura
4.
BMC Plant Biol ; 14: 228, 2014 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-25149061

RESUMO

BACKGROUND: The caseinolytic protease (Clp) is crucial for chloroplast biogenesis and proteostasis. The Arabidopsis Clp consists of two heptameric rings (P and R rings) assembled from nine distinct subunits. Hsp100 chaperones (ClpC1/2 and ClpD) are believed to dock to the axial pores of Clp and then transfer unfolded polypeptides destined to degradation. The adaptor proteins ClpT1 and 2 attach to the protease, apparently blocking the chaperone binding sites. This competition was suggested to regulate Clp activity. Also, monomerization of ClpT1 from dimers in the stroma triggers P and R rings association. So, oligomerization status of ClpT1 seems to control the assembly of the Clp protease. RESULTS: In this work, ClpT1 was obtained in a recombinant form and purified. In solution, it mostly consists of monomers while dimers represent a small fraction of the population. Enrichment of the dimer fraction could only be achieved by stabilization with a crosslinker reagent. We demonstrate that ClpT1 specifically interacts with the Hsp100 chaperones ClpC2 and ClpD. In addition, ClpT1 stimulates the ATPase activity of ClpD by more than 50% when both are present in a 1:1 molar ratio. Outside this optimal proportion, the stimulatory effect of ClpT1 on the ATPase activity of ClpD declines. CONCLUSIONS: The accessory protein ClpT1 behaves as a monomer in solution. It interacts with the chloroplastic Hsp100 chaperones ClpC2 and ClpD and tightly modulates the ATPase activity of the latter. Our results provide new experimental evidence that may contribute to revise and expand the existing models that were proposed to explain the roles of this poorly understood regulatory protein.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Transporte/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Polimerização , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
5.
Biochim Biophys Acta ; 1840(11): 3208-17, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25092651

RESUMO

BACKGROUND: Heme oxygenase catalyzes the conversion of heme to iron, carbon monoxide and biliverdin employing oxygen and reducing equivalents. This enzyme is essential for heme-iron utilization and contributes to virulence in Leptospira interrogans. METHODS: A phylogenetic analysis was performed using heme oxygenases sequences from different organisms including saprophytic and pathogenic Leptospira species. L. interrogans heme oxygenase (LepHO) was cloned, overexpressed and purified. The structural and enzymatic properties of LepHO were analyzed by UV-vis spectrophotometry and (1)H NMR. Heme-degrading activity, ferrous iron release and biliverdin production were studied with different redox partners. RESULTS: A plastidic type, high efficiently ferredoxin-NADP(+) reductase (LepFNR) provides the electrons for heme turnover by heme oxygenase in L. interrogans. This catalytic reaction does not require a ferredoxin. Moreover, LepFNR drives the heme degradation to completeness producing free iron and α-biliverdin as the final products. The phylogenetic divergence between heme oxygenases from saprophytic and pathogenic species supports the functional role of this enzyme in L. interrogans pathogenesis. CONCLUSIONS: Heme-iron scavenging by LepHO in L. interrogans requires only LepFNR as redox partner. Thus, we report a new substrate of ferredoxin-NADP(+) reductases different to ferredoxin and flavodoxin, the only recognized protein substrates of this flavoenzyme to date. The results presented here uncover a fundamental step of heme degradation in L. interrogans. GENERAL SIGNIFICANCE: Our findings contribute to understand the heme-iron utilization pathway in Leptospira. Since iron is required for pathogen survival and infectivity, heme degradation pathway may be relevant for therapeutic applications.

6.
BMC Plant Biol ; 12: 57, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22545953

RESUMO

BACKGROUND: Clp/Hsp100 chaperones are involved in protein quality control. They act as independent units or in conjunction with a proteolytic core to degrade irreversibly damaged proteins. Clp chaperones from plant chloroplasts have been also implicated in the process of precursor import, along with Hsp70 chaperones. They are thought to pull the precursors in as the transit peptides enter the organelle. How Clp chaperones identify their substrates and engage in their processing is not known. This information may lie in the position, sequence or structure of the Clp recognition motifs. RESULTS: We tested the influence of the position of the transit peptide on the interaction with two chloroplastic Clp chaperones, ClpC2 and ClpD from Arabidopsis thaliana (AtClpC2 and AtClpD). The transit peptide of ferredoxin-NADP+ reductase was fused to either the N- or C-terminal end of glutathione S-transferase. Another fusion with the transit peptide interleaved between two folded proteins was used to probe if AtClpC2 and AtClpD could recognize tags located in the interior of a polypeptide. We also used a mutated transit peptide that is not targeted by Hsp70 chaperones (TP1234), yet it is imported at a normal rate. The fusions were immobilized on resins and the purified recombinant chaperones were added. After a washing protocol, the amount of bound chaperone was assessed. Both AtClpC2 and AtClpD interacted with the transit peptides when they were located at the N-terminal position of a protein, but not when they were allocated to the C-terminal end or at the interior of a polypeptide. CONCLUSIONS: AtClpC2 and AtClpD have a positional preference for interacting with a transit peptide. In particular, the localization of the signal sequence at the N-terminal end of a protein seems mandatory for interaction to take place. Our results have implications for the understanding of protein quality control and precursor import in chloroplasts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/química , Cloroplastos/genética , Proteínas de Choque Térmico/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Transporte Proteico
7.
J Biol Chem ; 286(34): 29671-80, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21737456

RESUMO

HSP100 proteins are molecular chaperones involved in protein quality control. They assist in protein (un)folding, prevent aggregation, and are thought to participate in precursor translocation across membranes. Caseinolytic proteins ClpC and ClpD from plant chloroplasts belong to the HSP100 family. Their role has hitherto been investigated by means of physiological studies and reverse genetics. In the present work, we employed an in vitro approach to delve into the structural and functional characteristics of ClpC2 and ClpD from Arabidopsis thaliana (AtClpC2 and AtClpD). They were expressed in Escherichia coli and purified to near-homogeneity. The proteins were detected mainly as dimers in solution, and, upon addition of ATP, the formation of hexamers was observed. Both proteins exhibited basal ATPase activity (K(m), 1.42 mm, V(max), 0.62 nmol/(min × µg) for AtClpC2 and K(m) ∼19.80 mm, V(max) ∼0.19 nmol/(min × µg) for AtClpD). They were able to reactivate the activity of heat-denatured luciferase (∼40% for AtClpC2 and ∼20% for AtClpD). The Clp proteins tightly bound a fusion protein containing a model transit peptide. This interaction was detected by binding assays, where the chaperones were selectively trapped by the transit peptide-containing fusion, immobilized on glutathione-agarose beads. Association of HSP100 proteins to import complexes with a bound transit peptide-containing fusion was also observed in intact chloroplasts. The presented data are useful to understand protein quality control and protein import into chloroplasts in plants.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Proteínas de Choque Térmico/metabolismo , Multimerização Proteica/fisiologia , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Proteínas de Choque Térmico/genética , Transporte Proteico/fisiologia
8.
J Biol Chem ; 278(47): 46473-81, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12970339

RESUMO

Protein import into chloroplasts is postulated to occur with the involvement of molecular chaperones. We have determined that the transit peptide of ferredoxin-NADP(H) reductase precursor binds preferentially to an Hsp70 from chloroplast stroma. To investigate the role of Hsp70 molecular chaperones in chloroplast protein import, we analyzed the import into pea chloroplasts of preproteins with decreased Hsp70 binding affinity in their transit peptides. Our results indicate that the precursor with the lowest affinity for Hsp70 molecular chaperones in its transit peptide was imported to chloroplasts with similar apparent Km as the wild type precursor and a 2-fold increase in Vmax. Thus, a strong interaction between chloroplast stromal Hsp70 and the transit peptide seems not to be essential for protein import. These results indicate that in chloroplasts the main unfolding force during protein import may be applied by molecular chaperones other than Hsp70s. Although stromal Hsp70s undoubtedly participate in chloroplast biogenesis, the role of these molecular chaperones in chloroplast protein translocation differs from the one proposed in the mechanisms postulated up to date.


Assuntos
Cloroplastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Sequência de Bases , Ferredoxina-NADP Redutase/metabolismo , Cinética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Pisum sativum , Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico
9.
Eur J Biochem ; 269(22): 5431-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12423341

RESUMO

Protein transport across organelles' membranes requires that precursor proteins adopt an unfolded structure in order to be translocated by the import machinery. Ferredoxin-NADP+ reductase precursor, as well as many others, acquires a tightly folded structure that needs to be unfolded before or during its import. Several steps of chloroplast protein import are not fully understood. In particular, the role of different regions of the precursor protein has not been completely elucidated. In this work, we have studied the import into chloroplasts of precursor proteins with inclusions of amino acid spacers between the transit peptide and the mature protein, and with deletions in the N-terminal region of the mature enzyme. We measured the import rate constants for these precursors and the results indicate that the distance between the transit peptide and the core of the mature protein determines the import kinetics. The longer precursors were imported into the organelle faster than the wild type form. Precursors with deletions in the N-terminal region of the mature protein also showed increased import rates compared to the wild type. Homology studies amongst all family members reveal that only chloroplastic proteins possess this region. We suggest that even if the first amino acids of the mature protein do not contribute to its overall structural stability, they condition the kinetic parameters of the import reaction. Besides, the distance between the transit peptide and the mature protein core may be modulating the import rate at which the chloroplast incorporates this protein from the cytosol.


Assuntos
Ferredoxina-NADP Redutase/metabolismo , Sequência de Aminoácidos , Cloroplastos/metabolismo , Citosol/metabolismo , Cinética , Dados de Sequência Molecular , Peptídeos/química , Plasmídeos/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Ureia/farmacologia
10.
Protein Expr Purif ; 25(2): 248-55, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12135557

RESUMO

Refolding of proteins from inclusion bodies is a field of increasing interest for obtaining large amounts of active enzymes. Consequently, the development of inexpensive and scalable processes is required. This is particularly challenging in the case of eukaryotic proteins containing cysteines, which may form disulfide bonds in the native active protein. Previous studies have shown that the formation of disulfide bonds is essential for the refolding of prochymosin. In this work we demonstrate that air oxidation can be efficiently used for the refolding of prochymosin and that 48% of the unfolded protein can be recovered as active enzyme at a final protein concentration of 0.8 mg/ml. Refolding of the protein strictly correlates with the change in pH of the refolding solution. We were able to follow the degree of oxidative renaturation of the prochymosin by simply measuring pH. Thus, the scaling up of the refolding system under controlled conditions was easily achieved. Analyses of different substances as folding aids indicate that the use of L-arginine or neutral surfactants improves the recovery of active protein up to 67% of the initial protein. The overall results indicate that prochymosin can be efficiently and inexpensively refolded with high yields by controlled air oxidation.


Assuntos
Quimosina/isolamento & purificação , Quimosina/metabolismo , Precursores Enzimáticos/isolamento & purificação , Precursores Enzimáticos/metabolismo , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Oxigênio/farmacologia , Ar , Concentração de Íons de Hidrogênio , Oxirredução/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica , Dobramento de Proteína , Renaturação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA