Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Am J Clin Nutr ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284453

RESUMO

BACKGROUND: We recently reported that Mediterranean (MED) and green-MED diets significantly attenuated age-related brain atrophy by ∼50% within 18 mo. OBJECTIVE: The objective of this study was to explore the contribution of specific diet-induced parameters to brain-volume deviation from chronologic age. METHODS: A post hoc analysis of the 18-mo DIRECT PLUS trial, where participants were randomly assigned to the following groups: 1) healthy dietary guidelines, 2) MED diet, or 3) green-MED diet, high in polyphenols, and low in red meat. Both MED groups consumed 28 g walnuts/d (+440 mg/d polyphenols). The green-MED group further consumed green tea (3-4 cups/d) and Mankai green shake (Wolffia globosa aquatic plant) (+800 mg/d polyphenols). We collected blood samples through the intervention and followed brain structure volumes by magnetic resonance imaging (MRI). We used hippocampal occupancy (HOC) score (hippocampal and inferior lateral-ventricle volumes ratio) as a neurodegeneration marker and brain-age proxy. We applied multivariate linear regression models. RESULTS: Of 284 participants [88% male; age = 51.1 y; body mass index = 31.2 kg/m2; hemoglobin A1c (HbA1c) = 5.48%; APOE-ε4 genotype = 15.7%], 224 completed the trial with eligible whole-brain MRIs. Individuals with higher HOC deviations (i.e., younger brain age) presented lower body weight [r = -0.204; 95% confidence interval (CI): -0.298, -0.101], waist circumference (r = -0.207; 95% CI: -0.310, -0.103), diastolic (r = -0.186; 95% CI: -0.304, -0.072), systolic blood pressure (r = -0.189; 95% CI: -0.308, -0.061), insulin (r = -0.099; 95% CI: -0.194, -0.004), and HbA1c (r = -0.164; 95% CI: -0.337, -0.006) levels. After 18 mo, greater changes in HOC deviations (i.e., brain-age decline attenuation) were independently associated with improved HbA1c (ß = -0.254; 95% CI: -0.392, -0.117), HOMA-IR (ß = -0.200; 95% CI: -0.346, -0.055), fasting glucose (ß = -0.155; 95% CI: -0.293, -0.016), and c-reactive protein (ß = -0.153; 95% CI: -0.296, -0.010). Improvement in diabetes status was associated with greater HOC deviation changes than either no change in diabetes status (0.010; 95% CI: 0.002, 0.019) or with an unfavorable change (0.012; 95% CI: 0.002, 0.023). A decline in HbA1c was further associated with greater deviation changes in the thalamus, caudate nucleus, and cerebellum (P < 0.05). Greater consumption of Mankai and green tea (green-MED diet components) were associated with greater HOC deviation changes beyond weight loss. CONCLUSIONS: Glycemic control contributes to the neuroprotective effects of the MED and green-MED diets on brain age. Polyphenols-rich diet components as Mankai and green tea may contribute to a more youthful brain age. This trial was registered at clinicaltrials.gov at clinicaltrials.gov as NCT03020186.

2.
Metabolites ; 14(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39057716

RESUMO

It is assumed that bilirubin is hormonally regulated and influences weight development by preventing weight gain. However, studies in healthy infants are limited. The present study established reference values for bilirubin and investigated whether bilirubin levels are significantly associated with body weight, levels of ferritin and transferrin as well as steroid hormone levels in a study population of three- and six-month-old healthy infants. Data from a total of 411 study visits from the LIFE Child study (Leipzig, Germany) were analyzed. Associations were examined using linear regression analyses. Besides laboratory parameters, anthropometric data were gathered. We found statistically significant associations between body weight and bilirubin levels. In girls, we observed additional associations between bilirubin levels and both ferritin and transferrin concentrations at three months of age. At six months, steroid hormone levels were significantly associated with concentrations of total and indirect bilirubin, with effects differing by sex. Our study thus confirms associations already reported from animal studies and studies in adult populations. Furthermore, we showed that these associations already exist in the first year of life, are influenced by sex and age and, further, depend on the bilirubin type. Our results provide reference values for bilirubin and assist, therefore, in interpreting bilirubin levels in infancy.

3.
Obesity (Silver Spring) ; 32(7): 1245-1256, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38757229

RESUMO

OBJECTIVE: The objective of this study was to explore the effects of a green Mediterranean (green-MED) diet, which is high in dietary polyphenols and green plant-based protein and low in red/processed meat, on cardiovascular disease and inflammation-related circulating proteins and their associations with cardiometabolic risk parameters. METHODS: In the 18-month weight loss trial Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS), 294 participants with abdominal obesity were randomized to basic healthy dietary guidelines, Mediterranean (MED), or green-MED diets. Both isocaloric MED diet groups consumed walnuts (28 g/day), and the green-MED diet group also consumed green tea (3-4 cups/day) and green shakes (Mankai plant shake, 500 mL/day) and avoided red/processed meat. Proteome panels were measured at three time points using Olink CVDII. RESULTS: At baseline, a dominant protein cluster was significantly related to higher phenotypic cardiometabolic risk parameters, with the strongest associations attributed to magnetic resonance imaging-assessed visceral adiposity (false discovery rate of 5%). Overall, after 6 months of intervention, both the MED and green-MED diets induced improvements in cardiovascular disease and proinflammatory risk proteins (p < 0.05, vs. healthy dietary guidelines), with the green-MED diet leading to more pronounced beneficial changes, largely driven by dominant proinflammatory proteins (IL-1 receptor antagonist protein, IL-16, IL-18, thrombospondin-2, leptin, prostasin, galectin-9, and fibroblast growth factor 21; adjusted for age, sex, and weight loss; p < 0.05). After 18 months, proteomics cluster changes presented the strongest correlations with visceral adiposity reduction. CONCLUSIONS: Proteomics clusters may enhance our understanding of the favorable effect of a green-MED diet that is enriched with polyphenols and low in red/processed meat on visceral adiposity and cardiometabolic risk.


Assuntos
Dieta Mediterrânea , Obesidade Abdominal , Proteoma , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Obesidade Abdominal/dietoterapia , Gordura Intra-Abdominal/metabolismo , Redução de Peso , Adiposidade , Doenças Cardiovasculares/prevenção & controle , Polifenóis/administração & dosagem , Polifenóis/farmacologia , Adulto , Fatores de Risco Cardiometabólico , Inflamação , Chá
4.
Hepatology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537153

RESUMO

BACKGROUND AND AIMS: We demonstrated in the randomized 18-month DIRECT PLUS trial (n = 294) that a Mediterranean (MED) diet, supplemented with polyphenol-rich Mankai duckweed, green tea, and walnuts and restricted in red/processed meat, caused substantial intrahepatic fat (IHF%) loss compared with 2 other healthy diets, reducing NAFLD by half, regardless of similar weight loss. Here, we investigated the baseline proteomic profile associated with IHF% and the changes in proteomics associated with IHF% changes induced by lifestyle intervention. APPROACH AND RESULTS: We calculated IHF% by proton magnetic resonance spectroscopy (normal IHF% <5% and abnormal IHF% ≥5%). We assayed baseline and 18-month samples for 95 proteomic biomarkers.Participants (age = 51.3 ± 10.8 y; 89% men; and body mass index = 31.3 ± 3.9 kg/m 2 ) had an 89.8% 18-month retention rate; 83% had eligible follow-up proteomics measurements, and 78% had follow-up proton magnetic resonance spectroscopy. At baseline, 39 candidate proteins were significantly associated with IHF% (false discovery rate <0.05), mostly related to immune function pathways (eg, hydroxyacid oxidase 1). An IHF% prediction based on the DIRECT PLUS by combined model ( R2 = 0.47, root mean square error = 1.05) successfully predicted IHF% ( R2 = 0.53) during testing and was stronger than separately inputting proteins/traditional markers ( R2 = 0.43/0.44). The 18-month lifestyle intervention induced changes in 18 of the 39 candidate proteins, which were significantly associated with IHF% change, with proteins related to metabolism, extracellular matrix remodeling, and immune function pathways. Thrombospondin-2 protein change was higher in the green-MED compared to the MED group, beyond weight and IHF% loss ( p = 0.01). Protein principal component analysis revealed differences in the third principal component time distinct interactions across abnormal/normal IHF% trajectory combinations; p < 0.05 for all). CONCLUSIONS: Our findings suggest novel proteomic signatures that may indicate MRI-assessed IHF state and changes during lifestyle intervention. Specifically, carbonic anhydrase 5A, hydroxyacid oxidase 1, and thrombospondin-2 protein changes are independently associated with IHF% change, and thrombospondin-2 protein change is greater in the green-MED/high polyphenols diet.

5.
Clin Chem Lab Med ; 62(5): 900-910, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38038605

RESUMO

OBJECTIVES: A mass spectrometry (LC‒MS/MS)-based interlaboratory comparison study was performed for nine steroid analytes with five participating laboratories. The sample set contained 40 pooled samples of human serum generated from preanalyzed leftovers. To obtain a well-balanced distribution across reference intervals of each steroid, the leftovers first underwent a targeted mixing step. METHODS: All participants measured a sample set once using their own multianalyte protocols and calibrators. Four participants used in-house developed measurement platforms, including IVD-CE certified calibrators, which were used by three participants; the 5th lab used the whole LC‒MS kit from an IVD manufacturer. All labs reported results for 17-hydroxyprogesterone, androstenedione, cortisol, and testosterone, and four labs reported results for 11-deoxycortisol, corticosterone, cortisone, dehydroepiandrosterone sulfate (DHEAS), and progesterone. RESULTS: Good or acceptable overall comparability was found in Bland‒Altman and Passing‒Bablok analyses. Mean bias against the overall mean remained less than ±10 % except for DHEAS, androstenedione, and progesterone at one site and for cortisol and corticosterone at two sites (max. -18.9 % for androstenedione). The main analytical problems unraveled by this study included a bias not previously identified in proficiency testing, operator errors, non-supported matrix types and higher inaccuracy and imprecision at lower ends of measuring intervals. CONCLUSIONS: This study shows that intermethod comparison is essential for monitoring the validity of an assay and should serve as an example of how external quality assessment could work in addition to organized proficiency testing schemes.


Assuntos
Hidrocortisona , Progesterona , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massa com Cromatografia Líquida , Corticosterona , Androstenodiona , Espectrometria de Massas em Tandem/métodos , Esteroides , Testosterona
6.
Eur J Heart Fail ; 26(2): 448-457, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084483

RESUMO

AIMS: Anaemia and iron deficiency (ID) are common comorbidities in cardiovascular patients and are associated with a poor clinical status, as well as a worse outcome in patients with heart failure and acute myocardial infarction (AMI). Nevertheless, data concerning the impact of anaemia and ID on clinical outcomes in patients with cardiogenic shock (CS) are scarce. This study aimed to assess the impact of anaemia and ID on clinical outcomes in patients with CS complicating AMI. METHODS AND RESULTS: The presence of anaemia (haemoglobin <13 g/dl in men and <12 g/dl in women) or ID (ferritin <100 ng/ml or transferrin saturation <20%) was determined in patients with CS due to AMI from the CULPRIT-SHOCK trial. Blood samples were collected in the catheterization laboratory during initial percutaneous coronary intervention. Clinical outcomes were compared in four groups of patients having neither anaemia nor ID, against patients with anaemia with or without ID and patients with ID only. A total of 427 CS patients were included in this analysis. Anaemia without ID was diagnosed in 93 (21.7%), anaemia with ID in 54 study participants (12.6%), ID without anaemia in 72 patients (16.8%), whereas in 208 patients neither anaemia nor ID was present (48.9%). CS patients with anaemia without ID were older (73 ± 10 years, p = 0.001), had more frequently a history of arterial hypertension (72.8%, p = 0.01), diabetes mellitus (47.8%, p = 0.001), as well as chronic kidney disease (14.1%, p = 0.004) compared to CS patients in other groups. Anaemic CS patients without ID presence were at higher risk to develop a composite from all-cause death or renal replacement therapy at 30-day follow-up (odds ratio [OR] 3.83, 95% confidence interval [CI] 2.23-6.62, p < 0.001) than CS patients without anaemia/ID. The presence of ID in CS patients, with and without concomitant anaemia, did not increase the risk for the primary outcome (OR 1.17, 95% CI 0.64-2.13, p = 0.64; and OR 1.01, 95% CI 0.59-1.73, p = 0.54; respectively) within 30 days of follow-up. In time-to-event Kaplan-Meier analysis, anaemic CS patients without ID had a significantly higher hazard ratio (HR) for the primary outcome (HR 2.11, 95% CI 1.52-2.89, p < 0.001), as well as for death from any cause (HR 1.90, 95% CI 1.36-2.65, p < 0.001) and renal replacement therapy during 30-day follow-up (HR 2.99, 95% CI 1.69-5.31, p < 0.001). CONCLUSION: Concomitant anaemia without ID presence in patients with CS at hospital presentation is associated with higher risk for death from any cause or renal replacement therapy and the individual components of this composite endpoint within 30 days after hospitalization. ID has no relevant impact on clinical outcomes in patients with CS.


Assuntos
Anemia Ferropriva , Anemia , Insuficiência Cardíaca , Infarto do Miocárdio , Intervenção Coronária Percutânea , Masculino , Humanos , Feminino , Choque Cardiogênico/etiologia , Choque Cardiogênico/terapia , Choque Cardiogênico/diagnóstico , Insuficiência Cardíaca/complicações , Resultado do Tratamento , Infarto do Miocárdio/complicações , Infarto do Miocárdio/terapia , Anemia/complicações , Anemia Ferropriva/etiologia , Intervenção Coronária Percutânea/efeitos adversos
7.
Front Endocrinol (Lausanne) ; 14: 1243910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034010

RESUMO

Background: Fasting morning cortisol (FMC) stress hormone levels, are suggested to reflect increased cardiometabolic risk. Acute response to weight loss diet could elevate FMC. Richer Polyphenols and lower carbohydrates diets could favor FMC levels. We aimed to explore the effect of long-term high polyphenol Mediterranean diet (green-MED) on FMC and its relation to metabolic health. Methods: We randomized 294 participants into one of three dietary interventions for 18-months: healthy dietary guidelines (HDG), Mediterranean (MED) diet, and Green-MED diet. Both MED diets were similarly hypocaloric and lower in carbohydrates and included walnuts (28 g/day). The high-polyphenols/low-meat Green-MED group further included green tea (3-4 cups/day) and a Wolffia-globosa Mankai plant 1-cup green shakeFMC was obtained between 07:00-07:30AM at baseline, six, and eighteen-months. Results: Participants (age=51.1years, 88% men) had a mean BMI of 31.3kg/m2, FMC=304.07nmol\L, and glycated-hemoglobin-A1c (HbA1c)=5.5%; 11% had type 2 diabetes and 38% were prediabetes. Baseline FMC was higher among men (308.6 ± 90.05nmol\L) than women (269.6± 83.9nmol\L;p=0.02). Higher baseline FMC was directly associated with age, dysglycemia, MRI-assessed visceral adiposity, fasting plasma glucose (FPG), high-sensitivity C-reactive-protein (hsCRP), testosterone, Progesterone and TSH levels (p ≤ 0.05 for all). The 18-month retention was 89%. After 6 months, there were no significant changes in FMC among all intervention groups. However, after 18-months, both MED groups significantly reduced FMC (MED=-1.6%[-21.45 nmol/L]; Green-MED=-1.8%[-26.67 nmol/L]; p<0.05 vs. baseline), as opposed to HDG dieters (+4%[-12 nmol/L], p=0.28 vs. baseline), whereas Green-MED diet FMC change was significant as compared to HDG diet group (p=0.048 multivariable models). Overall, 18-month decrease in FMC levels was associated with favorable changes in FPG, HbA1c, hsCRP, TSH, testosterone and MRI-assessed hepatosteatosis, and with unfavorable changes of HDLc (p<0.05 for all, weight loss adjusted, multivariable models). Conclusion: Long-term adherence to MED diets, and mainly green-MED/high polyphenols diet, may lower FMC, stress hormone, levels,. Lifestyle-induced FMC decrease may have potential benefits related to cardiometabolic health, irrespective of weight loss. Clinical trial registration: ClinicalTrials.gov, identifier NCT03020186.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína C-Reativa , Jejum , Hemoglobinas Glicadas , Hidrocortisona , Testosterona , Tireotropina , Redução de Peso/fisiologia
8.
Gut Microbes ; 15(2): 2264457, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796016

RESUMO

We previously reported that autologous-fecal-microbiota-transplantation (aFMT), following 6 m of lifestyle intervention, attenuated subsequent weight regain and insulin rebound for participants consuming a high-polyphenol green-Mediterranean diet. Here, we explored whether specific changes in the core (abundant) vs. non-core (low-abundance) gut microbiome taxa fractions during the weight-loss phase (0-6 m) were differentially associated with weight maintenance following aFMT. Eighty-two abdominally obese/dyslipidemic participants (age = 52 years; 6 m weightloss = -8.3 kg) who provided fecal samples (0 m, 6 m) were included. Frozen 6 m's fecal samples were processed into 1 g, opaque and odorless aFMT capsules. Participants were randomly assigned to receive 100 capsules containing their own fecal microbiota or placebo over 8 m-14 m in ten administrations (adherence rate > 90%). Gut microbiome composition was evaluated using shotgun metagenomic sequencing. Non-core taxa were defined as ≤ 66% prevalence across participants. Overall, 450 species were analyzed. At baseline, 13.3% were classified as core, and Firmicutes presented the highest core proportion by phylum. During 6 m weight-loss phase, abundance of non-core species changed more than core species (P < .0001). Subject-specific changes in core and non-core taxa fractions were strongly correlated (Jaccard Index; r = 0.54; P < .001). Following aFMT treatment, only participants with a low 6 m change in core taxa, and a high change in non-core taxa, avoided 8-14 m weight regain (aFMT = -0.58 ± 2.4 kg, corresponding placebo group = 3.18 ± 3.5 kg; P = .02). In a linear regression model, low core/high non-core 6 m change was the only combination that was significantly associated with attenuated 8-14 m weight regain (P = .038; P = .002 for taxa patterns/treatment intervention interaction). High change in non-core, low-abundance taxa during weight-loss might mediate aFMT treatment success for weight loss maintenance.ClinicalTrials.gov: NCT03020186.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Pessoa de Meia-Idade , Fezes , Redução de Peso , Aumento de Peso
9.
Arch Gynecol Obstet ; 308(6): 1853-1862, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37707552

RESUMO

PURPOSE: During lactation, bone turnover increases, reflecting the mobilization of Calcium from maternal skeletal stores and resulting in bone loss. However, mechanisms are not yet fully understood, and previous studies have been comparatively small. We aim to assess bone metabolism during lactation by comparing bone-metabolism-related-parameters between large cohorts of lactating and nonlactating women. METHODS: In a retrospective cohort study, we recruited 779 postpartum women and 742 healthy, nonpregnant, nonlactating controls. Postpartum women were examined 3 and 6 months after delivery and retrospectively assigned to either the exclusively breastfeeding (exc-bf) group if they had exclusively breastfed or the nonexclusively breastfeeding (nonexc-bf) group if they had not exclusively breastfed up to the respective visit. Serum levels of PTH, Estradiol, total Calcium, Phosphate, and bone turnover markers (ßCTX, P1NP, Osteocalcin) were compared between the groups. RESULTS: Bone turnover markers were significantly increased in exc-bf and nonexc-bf women compared with the controls (all ps < .001). ßCTX was approximately twice as high in exc-bf women than in the controls. PTH levels were marginally higher in exc-bf (p < .001) and nonexc-bf women (p = .003) compared with the controls (6 months). Estradiol was suppressed in exc-bf women compared with the controls (p < .001, 3 months). CONCLUSION: Exc-bf and even nonexc-bf states are characterized by an increase in bone formation and resorption markers. The PTH data distribution of exc-bf, nonexc-bf, and control groups in the underpart of the reference range suggest that lactational bone loss is relatively independent of PTH.


Assuntos
Cálcio , Lactação , Feminino , Humanos , Estudos Retrospectivos , Hormônio Paratireóideo , Remodelação Óssea , Estradiol , Densidade Óssea
10.
BMC Med ; 21(1): 364, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743489

RESUMO

BACKGROUND: Epigenetic age is an estimator of biological age based on DNA methylation; its discrepancy from chronologic age warrants further investigation. We recently reported that greater polyphenol intake benefitted ectopic fats, brain function, and gut microbiota profile, corresponding with elevated urine polyphenols. The effect of polyphenol-rich dietary interventions on biological aging is yet to be determined. METHODS: We calculated different biological aging epigenetic clocks of different generations (Horvath2013, Hannum2013, Li2018, Horvath skin and blood2018, PhenoAge2018, PCGrimAge2022), their corresponding age and intrinsic age accelerations, and DunedinPACE, all based on DNA methylation (Illumina EPIC array; pre-specified secondary outcome) for 256 participants with abdominal obesity or dyslipidemia, before and after the 18-month DIRECT PLUS randomized controlled trial. Three interventions were assigned: healthy dietary guidelines, a Mediterranean (MED) diet, and a polyphenol-rich, low-red/processed meat Green-MED diet. Both MED groups consumed 28 g walnuts/day (+ 440 mg/day polyphenols). The Green-MED group consumed green tea (3-4 cups/day) and Mankai (Wolffia globosa strain) 500-ml green shake (+ 800 mg/day polyphenols). Adherence to the Green-MED diet was assessed by questionnaire and urine polyphenols metabolomics (high-performance liquid chromatography quadrupole time of flight). RESULTS: Baseline chronological age (51.3 ± 10.6 years) was significantly correlated with all methylation age (mAge) clocks with correlations ranging from 0.83 to 0.95; p < 2.2e - 16 for all. While all interventions did not differ in terms of changes between mAge clocks, greater Green-Med diet adherence was associated with a lower 18-month relative change (i.e., greater mAge attenuation) in Li and Hannum mAge (beta = - 0.41, p = 0.004 and beta = - 0.38, p = 0.03, respectively; multivariate models). Greater Li mAge attenuation (multivariate models adjusted for age, sex, baseline mAge, and weight loss) was mostly affected by higher intake of Mankai (beta = - 1.8; p = 0.061) and green tea (beta = - 1.57; p = 0.0016) and corresponded with elevated urine polyphenols: hydroxytyrosol, tyrosol, and urolithin C (p < 0.05 for all) and urolithin A (p = 0.08), highly common in green plants. Overall, participants undergoing either MED-style diet had ~ 8.9 months favorable difference between the observed and expected Li mAge at the end of the intervention (p = 0.02). CONCLUSIONS: This study showed that MED and green-MED diets with increased polyphenols intake, such as green tea and Mankai, are inversely associated with biological aging. To the best of our knowledge, this is the first clinical trial to indicate a potential link between polyphenol intake, urine polyphenols, and biological aging. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03020186.


Assuntos
Dieta Mediterrânea , Microbioma Gastrointestinal , Humanos , Adulto , Pessoa de Meia-Idade , Metilação de DNA , Envelhecimento/genética , Etnicidade
11.
Endocr Connect ; 12(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561076

RESUMO

Background and objectives: As part of the LIFE Child study, we previously described the associations between N-terminal-pro-hormone brain natriuretic peptide (NT-proBNP) and hs-troponin T (hs-TnT) levels and an individual's sex, age and pubertal status, as well as with body mass index (BMI) and serum lipid levels. For NT-proBNP, we found inverse associations with advancing puberty, increasing BMI and serum lipid levels. These findings led us to further question the putative influences of the developing individual's metabolic and growth status as represented by levels of insulin-like growth factor-1 (IGF-1) and IGF-1-binding protein-3 (IGF-BP3) as well as hemoglobin A1c (HbA1c) and Cystatin C (CysC). Material and methods: Serum values, medical history and anthropometric data provided by 2522 children aged 0.25-18 years were collected and analyzed as per study protocol. Results: A strong negative association between NT-proBNP values and IGF-1, IGF-BP3 and HbA1c levels was identified. For IGF-BP3, this interaction was modulated by sex and age, for HbA1c only by age. For hs-TnT, a positive association was found with IGF-BP3, IGF-1 and CysC. The association between hs-TnT and IGF-1 was sex dependent. The association between CysC and hs-TnT was stronger in girls, but the interaction with age was only seen in boys. Between hs-TnT and HbA1c, the association was significantly negative and modulated by age. Conclusion: Based on our large pediatric cohort, we could identify age- and sex-dependent interactions between the metabolic status represented by IGF-1, IGF-BP3, CysC and HbA1c levels and the cardiac markers NT-proBNP and hs-TnT.

12.
Metabolism ; 145: 155594, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236302

RESUMO

BACKGROUND: The capacity of a polyphenol-enriched diet to modulate the epigenome in vivo is partly unknown. Given the beneficial metabolic effects of a Mediterranean (MED) diet enriched in polyphenols and reduced in red/processed meat (green-MED), as previously been proven by the 18-month DIRECT PLUS randomized controlled trial, we analyzed the effects of the green-MED diet on methylome and transcriptome levels to highlight molecular mechanisms underlying the observed metabolic improvements. METHODS: Our study included 260 participants (baseline BMI = 31.2 kg/m2, age = 5 years) of the DIRECT PLUS trial, initially randomized to one of the intervention arms: A. healthy dietary guidelines (HDG), B. MED (440 mg polyphenols additionally provided by walnuts), C. green-MED (1240 mg polyphenols additionally provided by walnuts, green tea, and Mankai: green duckweed shake). Blood methylome and transcriptome of all study subjects were analyzed at baseline and after completing the 18-month intervention using Illumina EPIC and RNA sequencing technologies. RESULTS: A total of 1573 differentially methylated regions (DMRs; false discovery rate (FDR) < 5 %) were found in the green-MED compared to the MED (177) and HDG (377) diet participants. This corresponded to 1753 differentially expressed genes (DEGs; FDR < 5 %) in the green-MED intervention compared to MED (7) and HDG (738). Consistently, the highest number (6 %) of epigenetic modulating genes was transcriptionally changed in subjects participating in the green-MED intervention. Weighted cluster network analysis relating transcriptional and phenotype changes among participants subjected to the green-MED intervention identified candidate genes associated with serum-folic acid change (all P < 1 × 10-3) and highlighted one module including the KIR3DS1 locus, being negatively associated with the polyphenol changes (e.g. P < 1 × 10-4), but positively associated with the MRI-assessed superficial subcutaneous adipose area-, weight- and waist circumference- 18-month change (all P < 0.05). Among others, this module included the DMR gene Cystathionine Beta-Synthase, playing a major role in homocysteine reduction. CONCLUSIONS: The green-MED high polyphenol diet, rich in green tea and Mankai, renders a high capacity to regulate an individual's epigenome. Our findings suggest epigenetic key drivers such as folate and green diet marker to mediate this capacity and indicate a direct effect of dietary polyphenols on the one­carbon metabolism.


Assuntos
Dieta Mediterrânea , Humanos , Polifenóis/farmacologia , Dieta , Obesidade , Chá , Epigênese Genética
13.
Elife ; 122023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022140

RESUMO

Background: Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention. Methods: In a sub-study of 102 participants of the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on magnetic resonance imaging (MRI)-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age. Results: To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months' attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18 months of intervention. Finally, we showed that lower consumption of processed food, sweets and beverages were associated with attenuated brain age. Conclusions: Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging. Funding: The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11, Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission 09933838 SFB 105 (to I Shai).


Obesity is linked with the brain aging faster than would normally be expected. Researchers are able to capture this process by calculating a person's 'brain age' ­ how old their brain appears on detailed scans, regardless of chronological age. This approach also helps to monitor how certain factors, such as lifestyle, can influence brain aging over relatively short time scales. It is not clear whether lifestyle interventions that promote weight loss can help to slow obesity-driven brain aging. To answer this question, Levakov et al. studied 102 individuals who met the criteria for obesity and took part in a lifestyle intervention aimed to improve diet and physical activity levels over 18 months. The participants received a brain scan at the beginning and the end of the program; additional tests and measurements were also conducted at these times to capture other biological processes impacted by obesity, such as liver health. Levakov et al. used the brain scans taken at the start and end of the study to examine the impact of the lifestyle intervention on the aging trajectory. The results revealed that a reduction in body weight of 1% led to the participants' brain age being nearly 9 months younger than the expected brain age after 18 months. This attenuated aging was associated with changes in other biological measures, such as decreased liver fat and liver enzymes. Increases in liver fat and production of specific liver enzymes were previously shown to negatively impact brain health in Alzheimer's disease. Finally, examining more closely the food consumption reports completed by participants showed that reduced consumption of processed food, sweets and beverages were linked to attenuated brain aging. The findings show that lifestyle interventions which promote weight loss can have a beneficial impact on the aging trajectory of the brain observed with obesity. The next steps will include determining whether slowing down obesity-driven brain aging results in better clinical outcomes for patients. In addition, the work by Levakov et al. demonstrates a potential strategy to evaluate the success of lifestyle changes on brain health. With global rates of obesity rising, identifying interventions that have a positive impact on brain health could have important clinical, educational and social impacts.


Assuntos
Exercício Físico , Obesidade , Humanos , Lactente , Estudos Retrospectivos , Exercício Físico/fisiologia , Estilo de Vida , Redução de Peso , Encéfalo/diagnóstico por imagem
14.
Bone ; 171: 116727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36898571

RESUMO

BACKGROUND: Increased levels of bone marrow adipose tissue (BMAT) are negatively associated with skeletal health and hematopoiesis. BMAT is known to increase with age; however, the effect of long-term weight loss on BMAT is still unknown. OBJECTIVE: In this study, we examined BMAT response to lifestyle-induced weight loss in 138 participants (mean age 48 y; mean body mass index 31 kg/m2), who participated in the CENTRAL-MRI trial. METHODS: Participants were randomized for dietary intervention of low-fat or low-carb, with or without physical activity. Magnetic resonance imaging (MRI) was used to quantify BMAT and other fat depots at baseline, six and eighteen months of intervention. Blood biomarkers were also measured at the same time points. RESULTS: At baseline, the L3 vertebrae BMAT is positively associated with age, HDL cholesterol, HbA1c and adiponectin; but not with other fat depots or other metabolic markers tested. Following six months of dietary intervention, the L3 BMAT declined by an average of 3.1 %, followed by a return to baseline after eighteen months (p < 0.001 and p = 0.189 compared to baseline, respectively). The decrease of BMAT during the first six months was associated with a decrease in waist circumference, cholesterol, proximal-femur BMAT, and superficial subcutaneous adipose tissue (SAT), as well as with younger age. Nevertheless, BMAT changes did not correlate with changes in other fat depots. CONCLUSIONS: We conclude that physiological weight loss can transiently reduce BMAT in adults, and this effect is more prominent in younger adults. Our findings suggest that BMAT storage and dynamics are largely independent of other fat depots or cardio-metabolic risk markers, highlighting its unique functions.


Assuntos
Tecido Adiposo , Medula Óssea , Adulto , Humanos , Pessoa de Meia-Idade , Medula Óssea/patologia , Tecido Adiposo/metabolismo , Vértebras Lombares , Imageamento por Ressonância Magnética , Redução de Peso
15.
Clin Chem ; 69(3): 251-261, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644914

RESUMO

BACKGROUND: Medical results generated by European CE Marking for In Vitro Diagnostic or in-house tests should be traceable to higher order reference measurement systems (RMS), such as International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)-endorsed reference measurement procedures (RMPs) and reference materials. Currently, serum apolipoprotein (a) [apo(a)] is recognized as a novel risk factor for cardiovascular risk assessment and patient management. The former RMS for serum apo(a) is no longer available; consequently, an International System of Units (SI)-traceable, ideally multiplexed, and sustainable RMS for apo(a) is needed. METHODS: A mass spectrometry (MS)-based candidate RMP (cRMP) for apo(a) was developed using quantitative bottom-up proteomics targeting 3 proteotypic peptides. The method was provisionally validated according to ISO 15193 using a single human serum based calibrator traceable to the former WHO-IFCC RMS. RESULTS: The quantitation of serum apo(a) was by design independent of its size polymorphism, was linear from 3.8 to 456 nmol/L, and had a lower limit of quantitation for apo(a) of 3.8 nmol/L using peptide LFLEPTQADIALLK. Interpeptide agreement showed Pearson Rs of 0.987 and 0.984 for peptides GISSTVTGR and TPENYPNAGLTR, and method comparison indicated good correspondence (slopes 0.977, 1.033, and 1.085 for LFLEPTQADIALLK, GISSTVTGR, and TPENYPNAGLTR). Average within-laboratory imprecision of the cRMP was 8.9%, 11.9%, and 12.8% for the 3 peptides. CONCLUSIONS: A robust, antibody-independent, MS-based cRMP was developed as higher order RMP and an essential part of the apo(a) traceability chain and future RMS. The cRMP fulfils predefined analytical performance specifications, making it a promising RMP candidate in an SI-traceable MS-based RMS for apo(a).


Assuntos
Peptídeos , Soro , Humanos , Apoproteína(a) , Espectrometria de Massas , Padrões de Referência , Calibragem
16.
J Am Coll Cardiol ; 80(16): 1545-1556, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36229091

RESUMO

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is common in elderly individuals and is associated with an increased risk of both hematologic malignancies and cardiovascular disease. The impact of CHIP on the outcomes for patients with cardiogenic shock (CS) complicating acute myocardial infarction (AMI) remains undetermined. OBJECTIVES: The purpose of this study was to determine the prognostic impact of CHIP in CS after AMI. METHODS: Blood samples were obtained at randomization from 446 patients included in the CULPRIT-SHOCK (Culprit Lesion Only vs Multivessel Percutaneous Coronary Intervention in Cardiogenic Shock; NCT01927549) trial. CHIP was assessed using a next-generation sequencing approach targeting the most commonly mutated genes; the primary outcome at 30 days comprised all-cause mortality and renal replacement therapy. RESULTS: CHIP variants at ≥2% variant allele frequency were detected in 29% (n = 129), most commonly in the DNMT3A or TET2 genes, which harbored 47% and 36% of all mutations, respectively. Compared to non-CHIP patients, CHIP carriers were older and had decreased renal function and increased levels of N-terminal pro-B-type natriuretic peptide and inflammatory biomarkers. CHIP carriers had worse short-term outcomes measured either as mortality or as the combined clinical endpoint of mortality or severe renal failure within 30 days. Association of CHIP with the combined endpoint was independent of age and biomarkers reflecting kidney function, heart failure severity, and inflammation (OR: 1.83; 95% CI: 1.05-3.21; P = 0.03) but not significant regarding all-cause mortality (OR: 1.67; 95% CI: 0.96-2.90; P = 0.069). CONCLUSIONS: CHIP is frequent among AMI and CS patients and is associated with impaired clinical outcome. CHIP assessment may facilitate risk stratification in patients with CS and imply novel treatment targets. (Culprit Lesion Only vs Multivessel Percutaneous Coronary Intervention in Cardiogenic Shock [CULPRIT-SHOCK]; NCT01927549).


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Idoso , Hematopoiese Clonal , Humanos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Peptídeo Natriurético Encefálico , Intervenção Coronária Percutânea/efeitos adversos , Choque Cardiogênico/genética , Resultado do Tratamento
17.
BMC Med ; 20(1): 327, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175997

RESUMO

BACKGROUND: Mediterranean (MED) diet is a rich source of polyphenols, which benefit adiposity by several mechanisms. We explored the effect of the green-MED diet, twice fortified in dietary polyphenols and lower in red/processed meat, on visceral adipose tissue (VAT). METHODS: In the 18-month Dietary Intervention Randomized Controlled Trial PoLyphenols UnproceSsed (DIRECT-PLUS) weight-loss trial, 294 participants were randomized to (A) healthy dietary guidelines (HDG), (B) MED, or (C) green-MED diets, all combined with physical activity. Both isocaloric MED groups consumed 28 g/day of walnuts (+ 440 mg/day polyphenols). The green-MED group further consumed green tea (3-4 cups/day) and Wolffia globosa (duckweed strain) plant green shake (100 g frozen cubes/day) (+ 800mg/day polyphenols) and reduced red meat intake. We used magnetic resonance imaging (MRI) to quantify the abdominal adipose tissues. RESULTS: Participants (age = 51 years; 88% men; body mass index = 31.2 kg/m2; 29% VAT) had an 89.8% retention rate and 79.3% completed eligible MRIs. While both MED diets reached similar moderate weight (MED: - 2.7%, green-MED: - 3.9%) and waist circumference (MED: - 4.7%, green-MED: - 5.7%) loss, the green-MED dieters doubled the VAT loss (HDG: - 4.2%, MED: - 6.0%, green-MED: - 14.1%; p < 0.05, independent of age, sex, waist circumference, or weight loss). Higher dietary consumption of green tea, walnuts, and Wolffia globosa; lower red meat intake; higher total plasma polyphenols (mainly hippuric acid), and elevated urine urolithin A polyphenol were significantly related to greater VAT loss (p < 0.05, multivariate models). CONCLUSIONS: A green-MED diet, enriched with plant-based polyphenols and lower in red/processed meat, may be a potent intervention to promote visceral adiposity regression. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03020186.


Assuntos
Dieta Mediterrânea , Adiposidade , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Abdominal , Polifenóis , Chá , Redução de Peso
18.
Am J Clin Nutr ; 115(5): 1270-1281, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021194

RESUMO

BACKGROUND: The effect of diet on age-related brain atrophy is largely unproven. OBJECTIVES: We aimed to explore the effect of a Mediterranean diet (MED) higher in polyphenols and lower in red/processed meat (Green-MED diet) on age-related brain atrophy. METHODS: This 18-mo clinical trial longitudinally measured brain structure volumes by MRI using hippocampal occupancy score (HOC) and lateral ventricle volume (LVV) expansion score as neurodegeneration markers. Abdominally obese/dyslipidemic participants were randomly assigned to follow 1) healthy dietary guidelines (HDG), 2) MED, or 3) Green-MED diet. All subjects received free gym memberships and physical activity guidance. Both MED groups consumed 28 g walnuts/d (+440 mg/d polyphenols). The Green-MED group consumed green tea (3-4 cups/d) and Mankai (Wolffia-globosa strain, 100 g frozen cubes/d) green shake (+800 mg/d polyphenols). RESULTS: Among 284 participants (88% men; mean age: 51 y; BMI: 31.2 kg/m2; APOE-ε4 genotype = 15.7%), 224 (79%) completed the trial with eligible whole-brain MRIs. The pallidum (-4.2%), third ventricle (+3.9%), and LVV (+2.2%) disclosed the largest volume changes. Compared with younger participants, atrophy was accelerated among those ≥50 y old (HOC change: -1.0% ± 1.4% compared with -0.06% ± 1.1%; 95% CI: 0.6%, 1.3%; P < 0.001; LVV change: 3.2% ± 4.5% compared with 1.3% ± 4.1%; 95% CI: -3.1%, -0.8%; P = 0.001). In subjects ≥ 50 y old, HOC decline and LVV expansion were attenuated in both MED groups, with the best outcomes among Green-MED diet participants, as compared with HDG (HOC: -0.8% ± 1.6% compared with -1.3% ± 1.4%; 95% CI: -1.5%, -0.02%; P = 0.042; LVV: 2.3% ± 4.7% compared with 4.3% ± 4.5%; 95% CI: 0.3%, 5.2%; P = 0.021). Similar patterns were observed among younger subjects. Improved insulin sensitivity over the trial was the parameter most strongly associated with brain atrophy attenuation (P < 0.05). Greater Mankai, green tea, and walnut intake and less red and processed meat were significantly and independently associated with reduced HOC decline (P < 0.05). Elevated urinary concentrations of the polyphenols urolithin-A (r = 0.24; P = 0.013) and tyrosol (r = 0.26; P = 0.007) were significantly associated with lower HOC decline. CONCLUSIONS: A Green-MED (high-polyphenol) diet, rich in Mankai, green tea, and walnuts and low in red/processed meat, is potentially neuroprotective for age-related brain atrophy.This trial was registered at clinicaltrials.gov as NCT03020186.


Assuntos
Dieta Mediterrânea , Juglans , Atrofia , Encéfalo/diagnóstico por imagem , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polifenóis/farmacologia , Chá
19.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36613983

RESUMO

11-Oxygenated androgens (11-OAs) are being discussed as potential biomarkers in diagnosis and therapy control of disorders with androgen excess such as congenital adrenal hyperplasia and polycystic ovary syndrome. However, quantification of 11-OAs by liquid chromatography-tandem mass spectrometry (LC-MS/MS) still relies on extensive sample preparation including liquid-liquid extraction, derivatization and partial long runtimes, which is unsuitable for high-throughput analysis under routine laboratory settings. For the first time, an established online-solid-phase extraction-LC-MS/MS (online-SPE-LC-MS/MS) method for the quantitation of seven serum steroids in daily routine use was extended and validated to include 11-ketoandrostenedione, 11-ketotestosterone, 11ß-hydroxyandrostenedione and 11ß-hydroxytestosterone. Combining a simple protein precipitation step with fast chromatographic separation and ammonium fluoride-modified ionization resulted in a high-throughput method (6.6 min run time) featuring lower limits of quantification well below endogenous ranges (63-320 pmol/L) with recoveries between 85% and 117% (CVs ≤ 15%). Furthermore, the ability of this method to distinguish between adrenal and gonadal androgens was shown by comparing 11-OAs in patients with hyperandrogenemia to healthy controls. Due to the single shot multiplex design of the method, potential clinically relevant ratios of 11-OAs and corresponding androgens were readily available. The fully validated method covering endogenous concentration levels is ready to investigate the diagnostic values of 11-OAs in prospective studies and clinical applications.


Assuntos
Androgênios , Síndrome do Ovário Policístico , Feminino , Humanos , Androgênios/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Estudos Prospectivos , Esteroides , Síndrome do Ovário Policístico/diagnóstico
20.
Pediatr Nephrol ; 37(2): 423-432, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34432142

RESUMO

INTRODUCTION: The cystatin C (CysC) serum level is a marker of glomerular filtration rate and depends on age, gender, and pubertal stage. We hypothesize that CysC might overall reflect energy homeostasis and be regulated by components of the endocrine system and metabolites in pubertal adolescents. METHODS: Serum CysC levels and further possible effector parameters in 5355 fasting, morning venous blood samples from 2035 healthy participants of the LIFE Child cohort study (age 8 to 18 years) were analyzed. Recruitment started in 2011, with probands followed up once a year. Linear univariate and stepwise multivariate regression analyses were performed. RESULTS: Annual growth rate, serum levels of thyroid hormones, parathyroid hormone, insulin-like growth factor 1, hemoglobin A1c (HbA1c), uric acid, and alkaline phosphatase show relevant and significant associations with CysC serum concentrations (p <0.001). Furthermore, male probands' CysC correlated with the body mass index and testosterone among other sexual hormones. Multivariate analyses revealed that uric acid and HbA1c are associated variables of CysC independent from gender (p <0.001). In males, alkaline phosphatase (p <0.001) is additionally significantly associated with CysC. Thyroid hormones show significant correlations only in multivariate analyses in females (p <0.001). CONCLUSIONS: The described associations strongly suggest an impact of children's metabolism on CysC serum levels. These alterations need to be considered in kidney diagnostics using CysC in adolescents. Additionally, further studies are needed on CysC in children.


Assuntos
Cistatina C/sangue , Ácido Úrico , Adolescente , Fosfatase Alcalina , Biomarcadores , Criança , Estudos de Coortes , Creatinina , Feminino , Taxa de Filtração Glomerular , Hemoglobinas Glicadas , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA