Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(6): 880-890, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37005460

RESUMO

Host mucosal barriers possess an arsenal of defense molecules to maintain host-microbe homeostasis such as antimicrobial peptides and immunoglobulins. In addition to these well-established defense molecules, we recently reported small RNAs (sRNAs)-mediated interactions between human oral keratinocytes and Fusobacterium nucleatum (Fn), an oral pathobiont with increasing implications in extra-oral diseases. Specifically, upon Fn infection, oral keratinocytes released Fn-targeting tRNA-derived sRNAs (tsRNAs), an emerging class of noncoding sRNAs with gene regulatory functions. To explore potential antimicrobial activities of tsRNAs, we chemically modify the nucleotides of the Fn-targeting tsRNAs and demonstrate that the resultant tsRNA derivatives, termed MOD-tsRNAs, exhibit growth inhibitory effect against various Fn type strains and clinical tumor isolates without any delivery vehicle in the nanomolar concentration range. In contrast, the same MOD-tsRNAs do not inhibit other representative oral bacteria. Further mechanistic studies uncover the ribosome-targeting functions of MOD-tsRNAs in inhibiting Fn. Taken together, our work provides an engineering approach to targeting pathobionts through co-opting host-derived extracellular tsRNAs.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Humanos , Fusobacterium nucleatum/genética , RNA de Transferência/genética , MicroRNAs/genética
2.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992141

RESUMO

Saccharibacteria are a group of widespread and genetically diverse ultrasmall bacteria with highly reduced genomes that belong to the Candidate Phyla Radiation. Comparative genomic analyses suggest convergent evolution of key functions enabling the adaptation of environmental Saccharibacteria to mammalian microbiomes. Currently, our understanding of this environment-to-mammal niche transition within Saccharibacteria and their obligate episymbiotic association with host bacteria is limited. Here, we identified a complete arginine deiminase system (ADS), found in further genome streamlined mammal-associated Saccharibacteria but missing in their environmental counterparts, suggesting acquisition during environment-to-mammal niche transition. Using TM7x, the first cultured Saccharibacteria strain from the human oral microbiome and its host bacterium Actinomyces odontolyticus, we experimentally tested the function and impact of the ADS. We demonstrated that by catabolizing arginine and generating adenosine triphosphate, the ADS allows metabolically restrained TM7x to maintain higher viability and infectivity when disassociated from the host bacterium. Furthermore, the ADS protects TM7x and its host bacterium from acid stress, a condition frequently encountered within the human oral cavity due to bacterial metabolism of dietary carbohydrates. Intriguingly, with a restricted host range, TM7x forms obligate associations with Actinomyces spp. lacking the ADS but not those carrying the ADS, suggesting the acquired ADS may also contribute to partner selection for cooperative episymbiosis within a mammalian microbiome. These data present experimental characterization of a mutualistic interaction between TM7x and their host bacteria, and illustrate the benefits of acquiring a novel pathway in the transition of Saccharibacteria to mammalian microbiomes.


Assuntos
Bactérias/enzimologia , Hidrolases/metabolismo , Actinomyces , Adaptação Fisiológica , Animais , Arginina/metabolismo , Bactérias/classificação , Bactérias/genética , Genoma Bacteriano , Especificidade de Hospedeiro , Humanos , Hidrolases/genética , Mamíferos/genética , Microbiota , Boca/microbiologia , Filogenia , Simbiose
3.
Sci Rep ; 6: 27956, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27295972

RESUMO

Candida albicans and Fusobacterium nucleatum are well-studied oral commensal microbes with pathogenic potential that are involved in various oral polymicrobial infectious diseases. Recently, we demonstrated that F. nucleatum ATCC 23726 coaggregates with C. albicans SN152, a process mainly mediated by fusobacterial membrane protein RadD and Candida cell wall protein Flo9. The aim of this study was to investigate the potential biological impact of this inter-kingdom interaction. We found that F. nucleatum ATCC 23726 inhibits growth and hyphal morphogenesis of C. albicans SN152 in a contact-dependent manner. Further analysis revealed that the inhibition of Candida hyphal morphogenesis is mediated via RadD and Flo9 protein pair. Using a murine macrophage cell line, we showed that the F. nucleatum-induced inhibition of Candida hyphal morphogenesis promotes C. albicans survival and negatively impacts the macrophage-killing capability of C. albicans. Furthermore, the yeast form of C. albicans repressed F. nucleatum-induced MCP-1 and TNFα production in macrophages. Our study suggests that the interaction between C. albicans and F. nucleatum leads to a mutual attenuation of virulence, which may function to promote a long-term commensal lifestyle within the oral cavity. This finding has significant implications for our understanding of inter-kingdom interaction and may impact clinical treatment strategies.


Assuntos
Candida albicans/imunologia , Candida albicans/metabolismo , Agregação Celular/fisiologia , Fusobacterium nucleatum/metabolismo , Macrófagos/imunologia , Interações Microbianas/fisiologia , Animais , Candida albicans/genética , Linhagem Celular , Quimiocina CCL2/biossíntese , Técnicas de Cocultura , Hifas/citologia , Hifas/genética , Macrófagos/metabolismo , Camundongos , Microbiota/fisiologia , Boca/microbiologia , Simbiose/fisiologia , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA