Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Oncol ; 60(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35348189

RESUMO

The expression of the nuclear receptor transcription factor (TF) COUP­TFII is broadly associated with cell differentiation and cancer development, including of pancreatic ductal adenocarcinoma (PDAC), a devastating disease with one of the poorest prognoses among cancers worldwide. Recent studies have started to investigate the pathological and physiological roles of a novel COUP­TFII isoform (COUP­TFII_V2) that lacks the DNA­binding domain. As the role of the canonical COUP­TFII in PDAC was previously demonstrated, the present study evaluated whether COUP­TFII_V2 may have a functional role in PDAC. It was demonstrated that COUP­TFII_V2 naturally occurs in PDAC cells and in primary samples, where its expression is consistent with shorter overall survival and peripheral invasion. Of note, COUP­TFII_V2, exhibiting nuclear and cytosolic expression, is linked to epithelial to mesenchymal transition (EMT) and cancer progression, as confirmed by nude mouse experiments. The present results demonstrated that COUP­TFII_V2 distinctively regulates the EMT of PDAC and, similarly to its sibling, it is associated with tumor aggressiveness. The two isoforms have both overlapping and exclusive functions that cooperate with cancer growth and dissemination. By studying how PDAC cells switch from one isoform to the other, novel insight into cancer biology was gained, indicating that this receptor may serve as a novel possible target for PDAC management.


Assuntos
Fator II de Transcrição COUP/genética , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Receptores Nucleares Órfãos , Neoplasias Pancreáticas/genética , Isoformas de Proteínas/genética
2.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942546

RESUMO

Molecular mechanisms underlying Hepatitis C virus (HCV)-associated hepatocellular carcinoma (HCC) pathogenesis are still unclear. Therefore, we analyzed the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and other oxidative lesions at codon 176 of the p53 gene, as well as the generation of 3-(2-deoxy-ß-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG), in a cohort of HCV-related HCC patients from Italy. Detection of 8-oxodG and 5-hydroxycytosine (5-OHC) was performed by ligation mediated-polymerase chain reaction assay, whereas the levels of M1dG were measured by chromatography and mass-spectrometry. Results indicated a significant 130% excess of 8-oxodG at -TGC- position of p53 codon 176 in HCV-HCC cases as compared to controls, after correction for age and gender, whereas a not significant increment of 5-OHC at -TGC- position was found. Then, regression models showed an 87% significant excess of M1dG in HCV-HCC cases relative to controls. Our study provides evidence that increased adduct binding does not occur randomly on the sequence of the p53 gene but at specific sequence context in HCV-HCC patients. By-products of lipid peroxidation could also yield a role in HCV-HCC development. Results emphasize the importance of active oxygen species in inducing nucleotide lesions at a p53 mutational hotspot in HCV-HCC patients living in geographical areas without dietary exposure to aflatoxin B1.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/genética , Carcinoma Hepatocelular/genética , Códon/metabolismo , Citosina/análogos & derivados , Genes p53/genética , Hepatite C/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Códon/genética , Citosina/metabolismo , Adutos de DNA/genética , Células Hep G2 , Hepacivirus/patogenicidade , Humanos , Peroxidação de Lipídeos/genética , Neoplasias Hepáticas/virologia , Reação em Cadeia da Polimerase/métodos , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Cancer ; 146(12): 3410-3422, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31721195

RESUMO

RuvBL1 is an AAA+ ATPase whose expression in hepatocellular carcinoma (HCC) correlates with a poor prognosis. In vitro models suggest that targeting RuvBL1 could be an effective strategy against HCC. However, the role of RuvBL1 in the onset and progression of HCC remains unknown. To address this question, we developed a RuvBL1hep+/- mouse model and evaluated the outcome of DEN-induced liver carcinogenesis up to 12 months of progression. We found that RuvBL1 haploinsufficiency initially delayed the onset of liver cancer, due to a reduced hepatocyte turnover in RuvBL1hep+/- mice. However, RuvBL1hep+/- mice eventually developed HCC nodules that, with aging, grew larger than in the control mice. Moreover, RuvBL1hep+/- mice developed hepatic insulin resistance and impaired glucose homeostasis. We could determine that RuvBL1 regulates insulin signaling through the Akt/mTOR pathway in liver physiology in vivo as well as in normal hepatocytic and HCC cells in vitro. Whole transcriptome analysis of mice livers confirmed the major role of RuvBL1 in the regulation of hepatic glucose metabolism. Finally, RuvBL1 expression was found significantly correlated to glucose metabolism and mTOR signaling by bioinformatic analysis of human HCC sample from the publicly available TGCA database. These data uncover a role of RuvBL1 at the intersection of liver metabolism, hepatocyte proliferation and HCC development, providing a molecular rationale for its overexpression in liver cancer.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Carcinoma Hepatocelular/genética , Proteínas de Transporte/genética , DNA Helicases/genética , Resistência à Insulina/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Estudos de Coortes , DNA Helicases/metabolismo , Conjuntos de Dados como Assunto , Dietilnitrosamina/administração & dosagem , Dietilnitrosamina/toxicidade , Modelos Animais de Doenças , Progressão da Doença , Intervalo Livre de Doença , Glucose/metabolismo , Haploinsuficiência , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
4.
Int J Mol Sci ; 18(5)2017 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28468256

RESUMO

Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-ß-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe3O4-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 µg/mL of Fe3O4-NPs. Significant dose-response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.


Assuntos
Carcinoma Hepatocelular/terapia , Dano ao DNA , Hipertermia Induzida/métodos , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/uso terapêutico , Estresse Oxidativo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Adutos de DNA/análise , Adutos de DNA/genética , Células Hep G2 , Humanos , Peroxidação de Lipídeos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
5.
J Hepatol ; 66(4): 754-764, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27866920

RESUMO

BACKGROUND & AIMS: Hepatic stellate cell (HSC) transdifferentiation into collagen-producing myofibroblasts is a key event in hepatic fibrogenesis, but the transcriptional network that controls the acquisition of the activated phenotype is still poorly understood. In this study, we explored whether the nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is involved in HSC activation and in the multifunctional role of these cells during the response to liver injury. METHODS: COUP-TFII expression was evaluated in normal and cirrhotic livers by immunohistochemistry and Western blot. The role of COUP-TFII in HSC was assessed by gain and loss of function transfection experiments and by generation of mice with COUP-TFII deletion in HSC. Molecular changes were determined by gene expression microarray and RT-qPCR. RESULTS: We showed that COUP-TFII is highly expressed in human fibrotic liver and in mouse models of hepatic injury. COUP-TFII expression rapidly increased upon HSC activation and it was associated with the regulation of genes involved in cell motility, proliferation and angiogenesis. Inactivation of COUP-TFII impairs proliferation and invasiveness in activated HSC and COUP-TFII deletion in mice abrogate HSC activation and angiogenesis. Finally, co-culture experiments with HSC and liver sinusoidal endothelial cells (SEC) showed that COUP-TFII expression in HSC influenced SEC migration and tubulogenesis via a hypoxia-independent and nuclear factor kappaB-dependent mechanism. CONCLUSION: This study elucidates a novel transcriptional pathway in HSC that is involved in the acquisition of the proangiogenic phenotype and regulates the paracrine signals between HSC and SEC during hepatic wound healing. LAY SUMMARY: In this study, we identified an important regulator of HSC pathobiology. We showed that the orphan receptor COUP-TFII is an important player in hepatic neoangiogenesis. COUP-TFII expression in HSC controls the crosstalk between HSC and endothelial cells coordinating vascular remodelling during liver injury. TRANSCRIPT PROFILING: ArrayExpress accession E-MTAB-1795.


Assuntos
Fator II de Transcrição COUP/metabolismo , Células Estreladas do Fígado/metabolismo , Animais , Fator II de Transcrição COUP/deficiência , Fator II de Transcrição COUP/genética , Comunicação Celular , Movimento Celular , Proliferação de Células , Transdiferenciação Celular , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Estreladas do Fígado/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/genética , Regulação para Cima , Cicatrização/genética , Cicatrização/fisiologia
6.
DNA Res ; 23(4): 395-402, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27260513

RESUMO

The next-generation sequencing studies of breast cancer have reported that the tumour suppressor P53 (TP53) gene is mutated in more than 40% of the tumours. We studied the levels of oxidative lesions, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), along the coding strand of the exon 5 in breast cancer patients as well as in a reactive oxygen species (ROS)-attacked breast cancer cell line using the ligation-mediated polymerase chain reaction technique. We detected a significant 'in vitro' generation of 8-oxodG between the codons 163 and 175, corresponding to a TP53 region with high mutation prevalence, after treatment with xanthine plus xanthine oxidase, a ROS-generating system. Then, we evaluated the occurrence of oxidative lesions in the DNA-binding domain of the TP53 in the core needle biopsies of 113 of women undergoing breast investigation for diagnostic purpose. An increment of oxidative damage at the -G- residues into the codons 163 and 175 was found in the cancer cases as compared to the controls. We found significant associations with the pathological stage and the histological grade of tumours. As the major news of this study, this largest analysis of genomic footprinting of oxidative lesions at the TP53 sequence level to date provided a first roadmap describing the signatures of oxidative lesions in human breast cancer. Our results provide evidence that the generation of oxidative lesions at single nucleotide resolution is not an event highly stochastic, but causes a characteristic pattern of DNA lesions at the site of mutations in the TP53, suggesting causal relationship between oxidative DNA adducts and breast cancer.


Assuntos
Neoplasias da Mama/genética , DNA de Neoplasias/química , Éxons , Guanosina Monofosfato/análogos & derivados , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Códon , Adutos de DNA/química , Adutos de DNA/genética , DNA de Neoplasias/genética , Feminino , Guanosina Monofosfato/química , Guanosina Monofosfato/genética , Humanos , Pessoa de Meia-Idade , Estresse Oxidativo , Mutação Puntual
7.
Oncotarget ; 6(8): 5695-706, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25691058

RESUMO

Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex.In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients.


Assuntos
Neoplasias do Córtex Suprarrenal/química , Carcinoma Adrenocortical/química , Biomarcadores Tumorais/análise , Eletroforese em Gel Diferencial Bidimensional/métodos , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/terapia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/terapia , Adulto , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prognóstico , Proteômica/métodos
8.
World J Gastroenterol ; 20(47): 17756-72, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25548474

RESUMO

Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-ß-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing proteasome function in macrophages and dendritic cells, and consequently alters allogenic antigen presentation. Finally, acetaldehyde and ROS have a role in alcohol-related carcinogenesis because they can form DNA adducts that are prone to mutagenesis, and they interfere with methylation, synthesis and repair of DNA, thereby increasing HCC susceptibility.


Assuntos
Etanol/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Acetaldeído/metabolismo , Imunidade Adaptativa , Animais , Progressão da Doença , Humanos , Imunidade Inata , Fígado/imunologia , Fígado/patologia , Hepatopatias Alcoólicas/diagnóstico , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/imunologia , Hepatopatias Alcoólicas/terapia , Oxirredução , Prognóstico , Fatores de Risco , Transdução de Sinais
9.
J Hepatol ; 61(5): 1064-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24862448

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Although hepatectomy and transplantation have significantly improved survival, there is no effective chemotherapeutic treatment for HCC and its prognosis remains poor. Sustained activation of telomerase is essential for the growth and progression of HCC, suggesting that telomerase is a rational target for HCC therapy. Therefore, we developed a thymidine analogue pro-drug, acycloguanosyl-5'-thymidyltriphosphate (ACV-TP-T), which is specifically activated by telomerase in HCC cells and investigated its anti-tumour efficacy. METHODS: First, we verified in vitro whether ACV-TP-T was a telomerase substrate. Second, we evaluated proliferation and apoptosis in murine (Hepa1-6) and human (Hep3B, HuH7, HepG2) hepatic cancer cells treated with ACV-TP-T. Next, we tested the in vivo treatment efficacy in HBV transgenic mice that spontaneously develop hepatic tumours, and in a syngeneic orthotopic murine model where HCC cells were implanted directly in the liver. RESULTS: In vitro characterization provided direct evidence that the pro-drug was actively metabolized in liver cancer cells by telomerase to release the active form of acyclovir. Alterations in cell cycle and apoptosis were observed following in vitro treatment with ACV-TP-T. In the transgenic and orthotopic mouse models, treatment with ACV-TP-T reduced tumour growth, increased apoptosis, and reduced the proliferation of tumour cells. CONCLUSIONS: ACV-TP-T is activated by telomerase in HCC cells and releases active acyclovir that reduces proliferation and induces apoptosis in human and murine liver cancer cells. This pro-drug holds a great promise for the treatment of HCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Guanosina/análogos & derivados , Neoplasias Hepáticas/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Nucleotídeos de Timina/uso terapêutico , Aciclovir/metabolismo , Aciclovir/uso terapêutico , Animais , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Guanosina/metabolismo , Guanosina/uso terapêutico , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Transgênicos , Pró-Fármacos/metabolismo , Telomerase/metabolismo , Nucleotídeos de Timina/metabolismo
10.
Int J Cancer ; 134(7): 1648-58, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24122412

RESUMO

Despite the accumulating knowledge of alterations in pancreatic cancer molecular pathways, no substantial improvements in the clinical prognosis have been made and this malignancy continues to be a leading cause of cancer death in the Western World. The orphan nuclear receptor COUP-TFII is a regulator of a wide range of biological processes and it may exert a pro-oncogenic role in cancer cells; interestingly, indirect evidences suggest that the receptor could be involved in pancreatic cancer. The aim of this study was to evaluate the expression of COUP-TFII in human pancreatic tumors and to unveil its role in the regulation of pancreatic tumor growth. We evaluated COUP-TFII expression by immunohistochemistry on primary samples. We analyzed the effect of the nuclear receptor silencing in human pancreatic cancer cells by means of shRNA expressing cell lines. We finally confirmed the in vitro results by in vivo experiments on nude mice. COUP-TFII is expressed in 69% of tested primary samples and correlates with the N1 and M1 status and clinical stage; Kaplan-Meier and Cox regression analysis show that it may be an independent prognostic factor of worst outcome. In vitro silencing of COUP-TFII reduces the cell growth and invasiveness and it strongly inhibits angiogenesis, an effect mediated by the regulation of VEGF-C. In nude mice, COUP-TFII silencing reduces tumor growth by 40%. Our results suggest that COUP-TFII might be an important regulator of the behavior of pancreatic adenocarcinoma, thus representing a possible new target for pancreatic cancer therapy.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Fator II de Transcrição COUP/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/metabolismo , Idoso , Animais , Fator II de Transcrição COUP/biossíntese , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , Prognóstico , Fator C de Crescimento do Endotélio Vascular/biossíntese , Fator C de Crescimento do Endotélio Vascular/genética , Neoplasias Pancreáticas
11.
Gastroenterology ; 140(2): 709-720.e9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21044629

RESUMO

BACKGROUND & AIMS: Gemcitabine is the standard of care for metastatic and nonresectable pancreatic tumors. Phase II and III trials have not demonstrated efficacy of recently developed reagents, compared with gemcitabine alone; new chemotherapic agents are needed. Ninety percent of pancreatic tumors have telomerase activity, and expression correlates with tumor stage. We developed a thymidine analogue prodrug, acycloguanosyl 5'-thymidyltriphosphate (ACV-TP-T), that is metabolized by telomerase and releases the active form of acyclovir. We investigated the antitumor efficacy of ACV-TP-T in vitro and in vivo. METHODS: We evaluated proliferation and apoptosis of human pancreatic cancer cells (PANC-1, MiaPaca2, BxPc3, PL45, and Su.86.86) incubated with ACV-TP-T. The presence of ACV-TP-T and its metabolite inside the cells were analyzed by mass spectrometry. In vivo efficacy was evaluated in nude mice carrying PANC-1 or MiaPaca2 pancreatic xenograft tumors. RESULTS: The prodrug of ACV-TP-T was actively metabolized inside pancreatic cancer cells into the activated form of acyclovir; proliferation was reduced, apoptosis was increased, and the cell cycle was altered in pancreatic cancer incubated with ACV-TP-T, compared with controls. Administration of ACV-TP-T to mice reduced growth, increased apoptosis, and reduced proliferation and vascularization of pancreatic xenograft tumors. CONCLUSIONS: ACV-TP-T, a thymidine analogue that is metabolized by telomerase and releases the active form of acyclovir, reduces proliferation and induces apoptosis of human pancreatic cancer cell lines in vitro and pancreatic xenograft tumors in mice.


Assuntos
Adenocarcinoma/tratamento farmacológico , Guanosina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Telomerase/metabolismo , Timidina/metabolismo , Nucleotídeos de Timina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Guanosina/análise , Guanosina/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Nus , Nucleotídeos de Timina/análise , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Hepatology ; 52(2): 493-505, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20683949

RESUMO

UNLABELLED: Antidiabetic thiazolidinediones (TZD) have in vitro antiproliferative effect in epithelial cancers, including hepatocellular carcinoma (HCC). The effective anticancer properties and the underlying molecular mechanisms of these drugs in vivo remain unclear. In addition, the primary biological target of TZD, the ligand-dependent transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), is up-regulated in HCC and seems to provide tumor-promoting responses. The aim of our study was to evaluate whether chronic administration of TZD may affect hepatic carcinogenesis in vivo in relation to PPARgamma expression and activity. The effect of TZD oral administration for 26 weeks was tested on tumor formation in PPARgamma-expressing and PPARgamma-deficient mouse models of hepatic carcinogenesis. Proteomic analysis was performed in freshly isolated hepatocytes by differential in gel electrophoresis and mass spectrometry analysis. Identified TZD targets were confirmed in cultured PPARgamma-deficient hepatocytes. TZD administration in hepatitis B virus (HBV)-transgenic mice (TgN[Alb1HBV]44Bri) reduced tumor incidence in the liver, inhibiting hepatocyte proliferation and increasing apoptosis. PPARgamma deletion in hepatocytes of HBV-transgenic mice (Tg[HBV]CreKOgamma) did not modify hepatic carcinogenesis but increased the TZD antitumorigenic effect. Proteomic analysis identified nucleophosmin (NPM) as a TZD target in PPARgamma-deficient hepatocytes. TZD inhibited NPM expression at protein and messenger RNA levels and decreased NPM promoter activity. TZD inhibition of NPM was associated with the induction of p53 phosphorylation and p21 expression. CONCLUSION: These findings suggest that chronic administration of TZD has anticancer activity in the liver via inhibition of NPM expression and indicate that these drugs might be useful for HCC chemoprevention and treatment.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/virologia , Vírus da Hepatite B , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/virologia , Proteínas Nucleares/fisiologia , PPAR gama/fisiologia , Tiazolidinedionas/uso terapêutico , Animais , Hepatócitos , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/prevenção & controle , Neoplasias Experimentais/virologia , Nucleofosmina , Tiazolidinedionas/farmacologia , Células Tumorais Cultivadas
13.
PPAR Res ; 2008: 904041, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18670617

RESUMO

Rosiglitazone (RGZ), a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR)-gamma, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R) of human adrenocortical carcinoma (ACC) and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR). We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K)-Akt, and extracellular signal-regulated kinase (ERK1/2) cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.

14.
Arterioscler Thromb Vasc Biol ; 28(4): 718-24, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18239149

RESUMO

OBJECTIVE: Microvascular endothelium is one of the main targets of the inflammatory response. On specific activation, endothelial cells recruit Th1-lymphocytes at the inflammatory site. We investigated the intracellular signaling mediating tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma inflammatory response in human microvascular endothelial cells (HMEC-1) and the interfering effects of the peroxisome-proliferator-activated-receptor (PPARgamma) agonist, rosiglitazone (RGZ). METHODS AND RESULTS: TNFalpha and IFNgamma, mainly when combined, stimulate IFNgamma-inducible protein of 10 kDa (IP10) and fractalkine production evaluated by ELISA and TaqMan analyses. This effect is not only mediated by activation of the NFkB and Stat1 classic pathways, but also involves a rapid increase in phosphorylation and activation of extracellular signal-regulated kinases (ERK1/2) as measured by Western blot. RGZ interferes with TNFalpha and IFNgamma stimulation of IP10, fractalkine, and adhesion molecule through a novel rapid mechanism which involves the blocking of ERK activation. CONCLUSIONS: Our findings shed new light on the mechanisms underlying the inflammatory response of microvascular endothelium and on the possible therapeutic use of RGZ in vasculopathies involving Th1-responses.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interferon gama/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Linhagem Celular , Quimiocina CXCL10/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/patologia , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Interferon gama/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , PPAR gama/metabolismo , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Tiazolidinedionas/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
15.
Gastroenterology ; 131(4): 1235-52, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17030193

RESUMO

BACKGROUND & AIMS: Accumulating evidence indicates that acetaldehyde (AcCHO) is one of the main mediators of fibrogenesis in alcoholic liver disease. AcCHO stimulates synthesis of fibrillar collagens in hepatic stellate cells, but the molecular events directly involved in the activation of collagen genes are debatable. METHODS: Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor that is expressed in stellate cells, and its activation by specific ligands inhibits collagen synthesis. In this study, we evaluated the effects of AcCHO on PPARgamma transcriptional activity and its correlation with the AcCHO-induced collagen synthesis in hepatic stellate cells. RESULTS: AcCHO treatment inhibited ligand-dependent and -independent PPARgamma transcriptional activity, and this effect was correlated with an increased phosphorylation of a mitogen-activated protein kinase site at serine 84 of the human PPARgamma. Transfection of the PPARgammaSer84Ala mutant completely prevented the effect of AcCHO on PPARgamma activity and in parallel abrogated the induction of collagen gene expression by AcCHO. The effect of AcCHO on PPARgamma activity and phosphorylation was blocked by extracellular signal-regulated kinase (ERK) 1/2 and protein kinase C (PKC)delta inhibitors as well as by catalase, suggesting that hydrogen peroxide is involved in the molecular cascade responsible for PPARgamma phosphorylation via activation of the PKCdelta/ERK pathway. Furthermore, inhibition of c-Abl completely abrogated the effect of AcCHO on either PPARgamma function or collagen synthesis; in addition, expression of the PPARgammaSer84Ala mutant prevented the profibrogenic signals mediated by c-Abl activation. CONCLUSIONS: Our results showed that the induction of collagen expression by AcCHO in stellate cells is dependent on PPARgamma phosphorylation induced by a hydrogen peroxide-mediated activation of the profibrogenic c-Abl signaling pathway.


Assuntos
Acetaldeído/metabolismo , Peróxido de Hidrogênio/metabolismo , Hepatopatias Alcoólicas/metabolismo , PPAR gama/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Animais , Células Cultivadas , Depressores do Sistema Nervoso Central/farmacocinética , Colágeno/metabolismo , Etanol/farmacocinética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Masculino , Mutagênese Sítio-Dirigida , PPAR gama/genética , PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transcrição Gênica/efeitos dos fármacos
16.
Expert Opin Investig Drugs ; 15(9): 1039-49, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16916271

RESUMO

The thiazolidinediones (TZDs) are a class of synthetic compounds for treatment of insulin-resistant Type 2 diabetes mellitus. TZDs are known activators of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and exert their antidiabetic action largely through this nuclear receptor family. Moreover, increasing experimental evidences of PPAR-gamma-independent effects are accumulating. Apart from the established metabolic actions, TZD treatment exerts additional biological effect such as control of cell growth, differentiation, motility and programmed cell death. In this context, considerable interest has focused on TZDs as potential chemopreventive agents in oncology; however, despite encouraging observation on the potential anticancer effect of these drugs in several in vitro experimental models, controversial results have been obtained with animal models and in pilot clinical trials. This review summarises the molecular mechanisms of the antineoplastic actions of TZDs and the relevance of these findings in human pathology and therapy.


Assuntos
Antineoplásicos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Neoplasias/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Animais , Transformação Celular Neoplásica , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia
17.
World J Gastroenterol ; 11(8): 1122-30, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15754392

RESUMO

AIM: Thiazolidinediones (TZD) are a new class of oral antidiabetic drugs that have been shown to inhibit growth of same epithelial cancer cells. Although TZD were found to be ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), the mechanism by which TZD exert their anticancer effect is presently unclear. In this study, we analyzed the mechanism by which TZD inhibit growth of human pancreatic carcinoma cell lines in order to evaluate the potential therapeutic use of these drugs in pancreatic adenocarcinoma. METHODS: The effects of TZD in pancreatic cancer cells were assessed in anchorage-independent growth assay. Expression of PPARgamma was measured by reverse-transcription polymerase chain reaction and confirmed by Western blot analysis. PPARgamma activity was evaluated by transient reporter gene assay. Flow cytometry and DNA fragmentation assay were used to determine the effect of TZD on cell cycle progression and apoptosis respectively. The effect of TZD on ductal differentiation markers was performed by Western blot. RESULTS: Exposure to TZD inhibited colony formation in a PPARgamma-dependent manner. Growth inhibition was linked to G1 phase cell cycle arrest through induction of the ductal differentiation program without any increase of the apoptotic rate. CONCLUSION: TZD treatment in pancreatic cancer cells has potent inhibitory effects on growth by a PPAR-dependent induction of pancreatic ductal differentiation.


Assuntos
Adenocarcinoma , Apoptose/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Neoplasias Pancreáticas , Tiazolidinedionas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/citologia , Linhagem Celular Tumoral/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Humanos , PPAR gama/metabolismo , Ductos Pancreáticos/citologia , Fenótipo
18.
J Clin Endocrinol Metab ; 90(3): 1332-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15585569

RESUMO

Thiazolidinediones (TZDs) are a new class of antidiabetic drugs that have also been shown to possess antitumoral properties in different human cancers. TZDs bind and activate the peroxisome proliferator-activated receptor (PPAR)-gamma, which is a nuclear receptor acting as a transcription factor in several tissues. In the present study, we evaluated PPARgamma mRNA and protein expression in tissue samples of human adrenocortical carcinomas (ACCs), normal adrenal glands, and the human ACC cell line H295R. PPARgamma mRNA was expressed in six of eight ACC, two of three normal adrenal glands and the H295R cells. These results were confirmed by immunohistochemistry. PPARgamma transcriptional activity in H295R cells, monitored by a reporter gene assay, was induced 2- to 3-fold by TZDs, such as rosiglitazone (RGZ) and pioglitazone, whereas in PPARgamma-transfected cells RGZ alone or RGZ plus 9-cis retinoic acid further increased reporter activity. TZDs inhibited both the proliferation and invasiveness of H295R cells in a dose-dependent manner. Thymidine incorporation was reduced by about 60% by 20 mum of both TZDs. Cotreatment with the retinoic X receptor ligand 9-cis retinoic acid had an additive effect. TZDs increased the number of cells in the G(0)/G(1) phase and decreased them in the S phase. Western blot analysis showed that TZDs increased the expression of the cell cycle inhibitors p21 and p27 and reduced the expression of cyclin D1. Twenty micromoles of RGZ and pioglitazone reduced H295R invasiveness through Matrigel by about 85%. Zymography and ELISA tests showed that TZD inhibited metalloproteinase-2 secretion by H295R cells in a dose-dependent manner. These data suggest that TZDs reduce the malignant potential of the H295R ACC cell line and, therefore, might potentially constitute a novel tool in the medical treatment of human ACCs.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Hipoglicemiantes/farmacologia , Tiazolidinedionas/farmacologia , Neoplasias do Córtex Suprarrenal/patologia , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/patologia , Adulto , Idoso , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , PPAR gama/genética , PPAR gama/metabolismo , Pioglitazona , RNA Mensageiro/análise , Rosiglitazona , Células Tumorais Cultivadas
19.
J Hepatol ; 37(5): 584-91, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12399223

RESUMO

BACKGROUND/AIMS: Pirfenidone has been recently shown to reduce dimethynitrosamine-induced liver fibrosis in the rat, but no information are available on the effect of this drug on cultured hepatic stellate cells (HSC). METHODS: HSC proliferation was evaluated by measuring bromodeoxyuridine incorporation; PDGF-receptor autophosphorylation, extracellular signal-regulated kinase (ERK1/2) and pp70(S6K) activation were evaluated by western blot; protein kinase C activation was evaluated by western blot and by ELISA; type I collagen accumulation and alpha1(I) procollagen mRNA expression were evaluated by ELISA and northern blot, respectively. RESULTS: Pirfenidone significantly inhibited PDGF-induced HSC proliferation, starting at a concentration of 1 microM, with a maximal effect at 1000 microM, without affecting HSC viability and without inducing apoptosis. The inhibition of PDGF-induced HSC proliferation was associated neither with variations in PDGF-receptor autophosphorylation, or with ERK1/2 and pp70(S6K) activation. On the other hand, pirfenidone was able to inhibit PDGF-induced activation of the Na(+)/H(+) exchanger, which is involved in PDGF-induced HSC proliferation in HSC, with a maximal effect at 1000 microM and inhibited PDGF-induced protein kinase C activation. Pirfenidone 100 and 1000 microM inhibited type I collagen accumulation in the culture medium induced by transforming growth factor(beta1) by 54% and 92%, respectively, as well as TGF(beta1)-induced alpha1(I) procollagen mRNA expression. RESULTS: Pirfenidone could be a new candidate for antifibrotic therapy in chronic liver diseases.


Assuntos
Antineoplásicos/farmacologia , Colágeno Tipo I/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Piridonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Meios de Cultura/metabolismo , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Quinase C/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA