Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 13: 785727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975458

RESUMO

The regulation of the redox status involves the activation of intracellular pathways as Nrf2 which provides hormetic adaptations against oxidative stress in response to environmental stimuli. In the brain, Nrf2 activation upregulates the formation of glutathione (GSH) which is the primary antioxidant system mainly produced by astrocytes. Astrocytes have also been shown to be themselves the target of oxidative stress. However, how changes in the redox status itself could impact the intracellular Ca2+ homeostasis in astrocytes is not known, although this could be of great help to understand the neuronal damage caused by oxidative stress. Indeed, intracellular Ca2+ changes in astrocytes are crucial for their regulatory actions on neuronal networks. We have manipulated GSH concentration in astroglioma cells with selective inhibitors and activators of the enzymes involved in the GSH cycle and analyzed how this could modify Ca2+ homeostasis. IP3-mediated store-operated calcium entry (SOCE), obtained after store depletion elicited by Gq-linked purinergic P2Y receptors activation, are either sensitized or desensitized, following GSH depletion or increase, respectively. The desensitization may involve decreased expression of the proteins STIM2, Orai1, and Orai3 which support SOCE mechanism. The sensitization process revealed by exposing cells to oxidative stress likely involves the increase in the activity of Calcium Release-Activated Channels (CRAC) and/or in their membrane expression. In addition, we observe that GSH depletion drastically impacts P2Y receptor-mediated changes in membrane currents, as evidenced by large increases in Ca2+-dependent K+ currents. We conclude that changes in the redox status of astrocytes could dramatically modify Ca2+ responses to Gq-linked GPCR activation in both directions, by impacting store-dependent Ca2+-channels, and thus modify cellular excitability under purinergic stimulation.

2.
Front Pharmacol ; 12: 794680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046818

RESUMO

Gamma-L-glutamyl-L-glutamate (γ-Glu-Glu) was synthetized and further characterized for its activity on cultured neurons. We observed that γ-Glu-Glu elicited excitatory effects on neurons likely by activating mainly the N-methyl-D-aspartate (NMDA) receptors. These effects were dependent on the integrity of synaptic transmission as they were blocked by tetrodotoxin (TTX). We next evaluated its activity on NMDA receptors by testing it on cells expressing these receptors. We observed that γ-Glu-Glu partially activated NMDA receptors and exhibited better efficacy for NMDA receptors containing the GluN2B subunit. Moreover, at low concentration, γ-Glu-Glu potentiated the responses of glutamate on NMDA receptors. Finally, the endogenous production of γ-Glu-Glu was measured by LC-MS on the extracellular medium of C6 rat astroglioma cells. We found that extracellular γ-Glu-Glu concentration was, to some extent, directly linked to GSH metabolism as γ-Glu-Glu can be a by-product of glutathione (GSH) breakdown after γ-glutamyl transferase action. Therefore, γ-Glu-Glu could exert excitatory effects by activating neuronal NMDA receptors when GSH production is enhanced.

3.
Methods Mol Biol ; 1183: 355-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25023320

RESUMO

The Xenopus laevis oocyte is a widely used system for heterologous expression of exogenous ion channel proteins. They are easy to obtain, mechanically and electrically stable, have a large size, enabling multiple types of electrophysiological recordings: two-electrode voltage clamp, single cell-attached or cell-free patch-clamp and macropatch recordings. The size of an oocyte (1 mm in diameter) also allows for the use of additional electrodes (from 1 to 3) for injection of diverse materials (Ca(2+) chelators, peptides, chemicals, antibodies, proteic-partners, etc.) before or during the course of the electrophysiological experiment.We have successfully used this system to analyze the biophysical properties of pore-forming peptides. Simple extracellular perfusion of these peptides induced the formation of channels in the oocyte plasma membrane; these channels can then be studied and characterized in diverse ionic conditions. The ease of the perfusion and the stability of the voltage-clamped oocyte make it a powerful tool for such analyses. Compared to artificial bilayers, oocytes offer a real animal plasma membrane where biophysical properties and toxicity can be studied in the stable environment.


Assuntos
Canais de Cálcio/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp/métodos , Peptídeos/farmacologia , Xenopus laevis/metabolismo , Animais , Separação Celular/métodos , Eletrofisiologia/métodos , Feminino , Oócitos/efeitos dos fármacos
4.
Methods Mol Biol ; 403: 287-302, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18828001

RESUMO

The Xenopus laevis oocyte is a widely used system for heterologous expression of exogenous ion channel proteins (1, 2). Among other advantages, these easy to obtain, mechanically and electrically stable, large-sized cells enable multiple types of electrophysiological recordings: two-electrode voltage-clamp, single-cell attached or cell-free patch-clamp, and macropatch recordings. The size of an oocyte (1 mm in diameter) also allows the use of additional electrodes (1-3) for injection of diverse materials (Ca2+ chelators, peptides, chemicals, antibodies, proteic-partners, and so on) before or during the course of the electrophysiological experiment. We have successfully used this system to analyze the biophysical properties of pore-forming peptides. Simple perfusion of these peptides induced the formation of channels in the oocyte plasma membrane; these channels can then be studied and characterized in diverse ionic conditions. The ease of the perfusion and the stability of the voltage-clamped oocyte make it a powerful tool for such analyses. Compared with artificial bilayers, oocytes offer a real animal plasma membrane where biophysical properties and toxicity can be studied in the same environment.


Assuntos
Canais Iônicos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp/métodos , Peptídeos/metabolismo , Xenopus laevis/fisiologia , Animais , Canais de Cálcio/metabolismo , Ácido Egtázico/análogos & derivados , Injeções , Ativação do Canal Iônico , Potenciais da Membrana , Soluções , Termodinâmica
5.
Med Sci (Paris) ; 21(3): 279-83, 2005 Mar.
Artigo em Francês | MEDLINE | ID: mdl-15745702

RESUMO

Voltage-gated calcium channels are key players in a number of fundamental physiological functions including contraction, secretion, transmitter release or gene activation. They allow a flux of calcium into the cell that constitutes a switch-on signal for most of these functions. The structures responsible for the shaping of these fluxes by the membrane voltage belong to the channel itself, but a number of associated proteins are known to more precisely tune this calcium entry and adapt it to the cellular demand. The calcium channel regulatory beta subunit is undoubtedly the most important one, being influent on the expression, the kinetics, the voltage-dependence of channel opening and closing and on the pharmacology of the channel. Heterologous expression, combined to mutagenesis and electrophysiological and biochemical experiments have revealed the roles of short sequences of the beta subunit, including the BID (beta-interaction domain), in the physical and functional interactions with the channel pore. The resolved crystal structure of the beta subunit now sheds new light on these sequences and their interactions with the rest of the protein. The presence of a type 3 src-homology (SH3) domain and a guanylate kinase (GK) domain confirms that the subunit belongs to the MAGUK protein family. Consistently, the polyproline binding site and the kinase function of the SH3 and the GK domains, respectively, are non functional, and the BID appears to be buried in the structure, preserving the SH3-GK interaction but not directly available for interactions with the channel pore subunit. Anchoring of the beta subunit to the channel occurs via a hydrophobic grove in the GK domain, leaving a large surface of the subunit open to other protein-protein interactions. To what extent the intramolecular SH3-GK interaction is necessary for the stabilisation of this grove in a functional unit remains to be understood. The beta subunit may thus play a key role in scaffolding multiple proteins around the channel and organizing diverse calcium-dependent signalling pathways directly linked to voltage-gated calcium entry. These findings will undoubtedly vitalize the search for new beta-specific partners and functions.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/fisiologia , Estrutura Terciária de Proteína
6.
J Biol Chem ; 280(10): 8793-9, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15613469

RESUMO

Zinc at micromolar concentrations hyperpolarizes rat pancreatic beta-cells and brain nerve terminals by activating ATP-sensitive potassium channels (KATP). The molecular determinants of this effect were analyzed using insulinoma cell lines and cells transfected with either wild type or mutated KATP subunits. Zinc activated KATP in cells co-expressing rat Kir6.2 and SUR1 subunits, as in insulinoma cell lines. In contrast, zinc exerted an inhibitory action on SUR2A-containing cells. Therefore, SUR1 expression is required for the activating action of zinc, which also depended on extracellular pH and was blocked by diethyl pyrocarbonate, suggesting histidine involvement. The five SUR1-specific extracellular histidine residues were submitted to site-directed mutagenesis. Of them, two histidines (His-326 and His-332) were found to be critical for the activation of KATP by zinc, as confirmed by the double mutation H326A/H332A. In conclusion, zinc activates KATP by binding itself to extracellular His-326 and His-332 of the SUR1 subunit. Thereby zinc could exert a negative control on cell excitability and secretion process of pancreatic beta-and alpha-cells. In fact, we have recently shown that such a mechanism occurs in hippocampal mossy fibers, a brain region characterized, like the pancreas, by an important accumulation of zinc and a high density of SUR1-containing KATP.


Assuntos
Histidina , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Zinco/farmacologia , Transportadores de Cassetes de Ligação de ATP , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Insulinoma , Rim , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Mutagênese Sítio-Dirigida , Neoplasias Pancreáticas , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Receptores de Droga , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Receptores de Sulfonilureias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA