Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 189: 106683, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736415

RESUMO

In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa.


Assuntos
Canabidiol , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Canabidiol/farmacologia , Morte Celular , Mitocôndrias/metabolismo , Neoplasias da Próstata/metabolismo , Fosforilação Oxidativa , Carcinogênese/metabolismo , Hormônios/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
2.
Math Biosci ; 355: 108940, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400316

RESUMO

Using a hybrid cellular automaton with stochastic elements, we investigate the effectiveness of multiple drug therapies on prostate cancer (PCa) growth. The ability of Androgen Deprivation Therapy to reduce PCa growth represents a milestone in prostate cancer treatment, nonetheless most patients eventually become refractory and develop castration-resistant prostate cancer. In recent years, a "second generation" drug called enzalutamide has been used to treat advanced PCa, or patients already exposed to chemotherapy that stopped responding to it. However, tumour resistance to enzalutamide is not well understood, and in this context, preclinical models and in silico experiments (numerical simulations) are key to understanding the mechanisms of resistance and to assessing therapeutic settings that may delay or prevent the onset of resistance. In our mathematical system, we incorporate cell phenotype switching to model the development of increased drug resistance, and consider the effect of the micro-environment dynamics on necrosis and apoptosis of the tumour cells. The therapeutic strategies that we explore include using a single drug (enzalutamide), and drug combinations (enzalutamide and everolimus or cabazitaxel) with different treatment schedules. Our results highlight the effectiveness of alternating therapies, especially alternating enzalutamide and cabazitaxel over a year, and a comparison is made with data taken from TRAMP mice to verify our findings.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Camundongos , Animais , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/uso terapêutico , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral
3.
Cancer Lett ; 526: 217-224, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861311

RESUMO

Prostate cancer (PCa) is a leading cause of cancer mortality in the male population commonly treated with androgen deprivation therapy (ADT) and relapsing as aggressive and androgen-independent castration-resistant prostate cancer (CRPC). In PCa the FGF/FGFR family of growth factors and receptors represents a relevant mediator of cancer growth, tumor-stroma interaction, and a driver of resistance and relapse to ADT. In the present work, we validate the therapeutic efficacy the FDA-approved FGFR inhibitor pemigatinib, in an integrated platform consisting of human and murine PCa cells, and the transgenic multistage TRAMP model of PCa that recapitulates both androgen-dependent and CRPC settings. Our results show for the first time that pemigatinib causes intracellular stress and cell death in PCa cells and prevents tumor growth in vivo and in the multistage model. In addition, the combination of pemigatinib with enzalutamide resulted in long-lasting tumor inhibition and prevention of CRPC relapse in TRAMP mice. These data are confirmed by the implementation of a stochastic mathematical model and in silico simulation. Pemigatinib represents a promising FDA-approved FGFR inhibitor for the treatment of PCa and CRPC alone and in combination with enzalutamide.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Morfolinas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Antagonistas de Androgênios/farmacologia , Animais , Humanos , Masculino , Camundongos , Morfolinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia
4.
Math Biosci Eng ; 18(6): 8577-8602, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34814314

RESUMO

Prostate cancer is the fifth most common cause of death from cancer, and the second most common diagnosed cancer in men. In the last few years many mathematical models have been proposed to describe the dynamics of prostate cancer under treatment. So far one of the major challenges has been the development of mathematical models that would represent in vivo conditions and therefore be suitable for clinical applications, while being mathematically treatable. In this paper, we take a step in this direction, by proposing a nonlinear distributed-delay dynamical system that explores neuroendocrine transdifferentiation in human prostate cancer in vivo. Sufficient conditions for the existence and the stability of a tumour-present equilibrium are given, and the occurrence of a Hopf bifurcation is proven for a uniform delay distribution. Numerical simulations are provided to explore differences in behaviour for uniform and exponential delay distributions. The results suggest that the choice of the delay distribution is key in defining the dynamics of the system and in determining the conditions for the onset of oscillations following a switch in the stability of the tumour-present equilibrium.


Assuntos
Modelos Biológicos , Modelos Teóricos , Humanos , Fatores de Tempo
5.
Cancer Res ; 80(7): 1564-1577, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029552

RESUMO

Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in patients previously exposed to chemotherapy. However, resistance to enzalutamide and enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that may delay or prevent the onset of resistance. In this study, the prostate cancer multistage murine model TRAMP and TRAMP-derived cells have been used to extensively characterize in vitro and in vivo the response and resistance to enzalutamide. The therapeutic profile as well as the resistance onset were characterized and a multiscale stochastic mathematical model was proposed to link the in vitro and in vivo evolution of prostate cancer. The model showed that all therapeutic strategies that use enzalutamide result in the onset of resistance. The model also showed that combination therapies can delay the onset of resistance to enzalutamide, and in the best scenario, can eliminate the disease. These results set the basis for the exploitation of this "TRAMP-based platform" to test novel therapeutic approaches and build further mathematical models of combination therapies to treat prostate cancer and CRPC.Significance: Merging mathematical modeling with experimental data, this study presents the "TRAMP-based platform" as a novel experimental tool to study the in vitro and in vivo evolution of prostate cancer resistance to enzalutamide.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antagonistas de Receptores de Andrógenos/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzamidas , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Camundongos , Nitrilas , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxoides/farmacologia , Taxoides/uso terapêutico
6.
Cancers (Basel) ; 11(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480336

RESUMO

Bladder tumors are a diffuse type of cancer. Long pentraxin-3 (PTX3) is a component of the innate immunity with pleiotropic functions in the regulation of immune response, tissue remodeling, and cancer progression. PTX3 may act as an oncosuppressor in different contexts, functioning as an antagonist of the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system, rewiring the immune microenvironment, or acting through mechanisms not yet fully clarified. In this study we used biopsies and data mining to assess that PTX3 is differentially expressed during the different stages of bladder cancer (BC) progression. BC cell lines, representative of different tumor grades, and transgenic/carcinogen-induced models were used to demonstrate in vitro and in vivo that PTX3 production by tumor cells decreases along the progression from low-grade to high-grade advanced muscle invasive forms (MIBC). In vitro and in vivo data revealed for the first time that PTX3 modulation and the consequent impairment of FGF/FGR systems in BC cells have a significant impact on different biological features of BC growth, including cell proliferation, motility, metabolism, stemness, and drug resistance. PTX3 exerts an oncosuppressive effect on BC progression and may represent a potential functional biomarker in BC evolution. Moreover, FGF/FGFR blockade has an impact on drug resistance and stemness features in BC.

7.
Cancer Res ; 75(15): 2975-86, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26069250

RESUMO

Prostate cancer is highly sensitive to hormone therapy because androgens are essential for prostate cancer cell growth. However, with the nearly invariable progression of this disease to androgen independence, endocrine therapy ultimately fails to control prostate cancer in most patients. Androgen-independent acquisition may involve neuroendocrine transdifferentiation, but there is little knowledge about this process, which is presently controversial. In this study, we investigated this question in a novel model of human androgen-dependent LNCaP cells cultured for long periods in hormone-deprived conditions. Strikingly, characterization of the neuroendocrine phenotype by transcriptomic, metabolomic, and other statistically integrated analyses showed how hormone-deprived LNCaP cells could transdifferentiate to a nonmalignantneuroendocrine phenotype. Notably, conditioned media from neuroendocrine-like cells affected LNCaP cell proliferation. Predictive in silico models illustrated how after an initial period, when LNCaP cell survival was compromised by an arising population of neuroendocrine-like cells, a sudden trend reversal occurred in which the neuroendocrine-like cells functioned to sustain the remaining androgen-dependent LNCaP cells. Our findings provide direct biologic and molecular support for the concept that neuroendocrine transdifferentiation in prostate cancer cell populations influences the progression to androgen independence.


Assuntos
Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Algoritmos , Androgênios/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Análise por Conglomerados , Meios de Cultivo Condicionados/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Modelos Teóricos , Fenótipo , Reação em Cadeia da Polimerase , Neoplasias da Próstata/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA