Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987037

RESUMO

Acrylamide, a suspected human carcinogen, is generated during food processing at high temperatures in the Maillard reaction, which involves reducing sugars and free asparagine. In wheat derivatives, free asparagine represents a key factor in acrylamide formation. Free asparagine levels in the grain of different wheat genotypes has been investigated in recent studies, but little is known about elite varieties that are cultivated in Italy. Here, we analysed the accumulation of free asparagine in a total of 54 bread wheat cultivars that are relevant for the Italian market. Six field trials in three Italian locations over two years were considered. Wholemeal flours obtained from harvested seeds were analysed using an enzymatic method. Free asparagine content ranged from 0.99 to 2.82 mmol/kg dry matter in the first year, and from 0.55 to 2.84 mmol/kg dry matter in the second year. Considering the 18 genotypes that were present in all the field trials, we evaluated possible environment and genetic influences for this trait. Some cultivars seemed to be highly affected by environment, whereas others showed a relative stability in free asparagine content across years and locations. Finally, we identified two varieties showing the highest free asparagine levels in our analysis, representing potential useful materials for genotype x environment interaction studies. Two other varieties, which were characterized by low amounts of free asparagine in the considered samples, may be useful for the food industry and for future breeding programs aimed to reduce acrylamide-forming potential in bread wheat.

2.
PLoS One ; 13(11): e0206993, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30439980

RESUMO

The α-zein gene family encodes the most abundant storage proteins of maize (Zea mays) endosperm. Members of this family are expressed in a parent-of-origin manner. To characterize this phenomenon further, we investigated the expression of a subset of α-zein polypeptides in reciprocal crosses between o2 lines that were characterized by a simplified α-zein pattern. Maize lines that suppressed the expression of α-zeins when used as female parents were identified. The suppression was cross-specific, occurring only when specific genetic backgrounds were combined. Four α-zein sequences that were sensitive to uniparental expression were isolated. Molecular characterization of these α-zeins confirmed that their expression or suppression depended on the genetic proprieties of the endosperm tissue instead of their parental origin. DNA methylation analysis of both maternally and paternally expressed α-zeins revealed no clear correlation between this epigenetic marker and parent-of-origin allelic expression, suggesting that an additional factor(s) is involved in this process. Genetic analyses revealed that the ability of certain lines to suppress α-zein expression was unstable after one round of heterozygosity with non-suppressing lines. Interestingly, α-zeins also showed a transgressive expression pattern because unexpressed isoforms were reactivated in both F2 and backcross plants. Collectively, our results suggest that parent-of-origin expression of specific α-zein alleles depends on a complex interaction between genotypes in a manner that is reminiscent of paramutation-like phenomena.


Assuntos
Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Alelos , Sequência de Aminoácidos , Quimera/genética , Metilação de DNA , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Zeína/genética
3.
Science ; 357(6346): 93-97, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28684525

RESUMO

Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer (T. turgidum ssp. dicoccoides). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 (TtBtr1) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties.


Assuntos
Produtos Agrícolas/genética , Domesticação , Genes de Plantas , Tetraploidia , Triticum/genética , Evolução Biológica , Mutação , Melhoramento Vegetal , Sintenia
4.
Biochemistry ; 56(15): 2116-2125, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28358192

RESUMO

The protein disulfide isomerase (PDI) family comprises a wide set of enzymes mainly involved in thiol-disulfide exchange reactions in the endoplasmic reticulum. Class A PDIs (PDI-A) constitute the smallest members of the family, consisting of a single thioredoxin (TRX) module without any additional domains. To date, their catalytic activity and cellular function are still poorly understood. To gain insight into the role of higher-plant class A PDIs, the biochemical properties of rAtPDI-A, the recombinant form of Arabidopsis thaliana PDI-A, have been investigated. As expressed, rAtPDI-A has only little oxidoreductase activity, but it appears to be capable of binding an iron-sulfur (Fe-S) cluster, most likely a [2Fe-2S] center, at the interface between two protein monomers. A mutational survey of all cysteine residues of rAtPDI-A indicates that only the second and third cysteines of the CXXXCKHC stretch, containing the putative catalytic site CKHC, are primarily involved in cluster coordination. A key role is also played by the lysine residue. Its substitution with glycine, which restores the canonical PDI active site CGHC, does not influence the oxidoreductase activity of the protein, which remains marginal, but strongly affects the binding of the cluster. It is therefore proposed that the unexpected ability of rAtPDI-A to accommodate an Fe-S cluster is due to its very unique CKHC motif, which is conserved in all higher-plant class A PDIs, differentiating them from all other members of the PDI family.


Assuntos
Arabidopsis/enzimologia , Ferro/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Recombinantes/metabolismo
5.
Microb Cell Fact ; 15(1): 194, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842546

RESUMO

BACKGROUND: The big challenge in any anti-tumor therapeutic approach is represented by the development of drugs selectively acting on the target with limited side effects, that exploit the unique characteristics of malignant cells. The urokinase (urokinase-type plasminogen activator, uPA) and its receptor uPAR have been identified as preferential target candidates since they play a key role in the evolution of neoplasms and are associated with neoplasm aggressiveness and poor clinical outcome in several different tumor types. RESULTS: To selectively target uPAR over-expressing cancer cells, we prepared a set of chimeric proteins (ATF-SAP) formed by the human amino terminal fragments (ATF) of uPA and the plant ribosome inactivating protein saporin (SAP). Codon-usage optimization was used to increase the expression levels of the chimera in the methylotrophic yeast Pichia pastoris. We then moved the bioprocess to bioreactors and demonstrated that the fed-batch production of the recombinant protein can be successfully achieved, obtaining homogeneous discrete batches of the desired constructs. We also determined the cytotoxic activity of the obtained batch of ATF-SAP which was specifically cytotoxic for U937 leukemia cells, while another construct containing a catalytically inactive mutant form of SAP showed no activity. CONCLUSION: Our results demonstrate that the uPAR-targeted, saporin-based recombinant fusion ATF-SAP can be produced in a fed-batch fermentation with full retention of the molecules selective cytotoxicity and hence therapeutic potential.


Assuntos
Proteínas Recombinantes de Fusão/biossíntese , Proteínas Inativadoras de Ribossomos Tipo 1/biossíntese , Ativador de Plasminogênio Tipo Uroquinase/biossíntese , Reatores Biológicos , Ensaios de Seleção de Medicamentos Antitumorais , Fermentação , Humanos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Células U937 , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
6.
Microb Cell Fact ; 14: 19, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25889802

RESUMO

BACKGROUND: Antibodies raised against selected antigens over-expressed at the cell surface of malignant cells have been chemically conjugated to protein toxin domains to obtain immunotoxins (ITs) able to selectively kill cancer cells. Since latest generation immunotoxins are composed of a toxic domain genetically fused to antibody fragment(s) which confer on the IT target selective specificity, we rescued from the hydridoma 4KB128, a recombinant single-chain variable fragment (scFv) targeting CD22, a marker antigen expressed by B-lineage leukaemias and lymphomas. We constructed several ITs using two enzymatic toxins both able to block protein translation, one of bacterial origin (a truncated version of Pseudomonas exotoxin A, PE40) endowed with EF-2 ADP-ribosylation activity, the other being the plant ribosome-inactivating protein saporin, able to specifically depurinate 23/26/28S ribosomal RNA. PE40 was selected because it has been widely used for the construction of recombinant ITs that have already undergone evaluation in clinical trials. Saporin has also been evaluated clinically and has recently been expressed successfully at high levels in a Pichia pastoris expression system. The aim of the present study was to evaluate optimal microbial expression of various IT formats. RESULTS: An anti-CD22 scFv termed 4KB was obtained which showed the expected binding activity which was also internalized by CD22+ target cells and was also competed for by the parental monoclonal CD22 antibody. Several fusion constructs were designed and expressed either in E. coli or in Pichia pastoris and the resulting fusion proteins affinity-purified. Protein synthesis inhibition assays were performed on CD22+ human Daudi cells and showed that the selected ITs were active, having IC50 values (concentration inhibiting protein synthesis by 50% relative to controls) in the nanomolar range. CONCLUSIONS: We undertook a systematic comparison between the performance of the different fusion constructs, with respect to yields in E. coli or P. pastoris expression systems and also with regard to each constructs specific killing efficacy. Our results confirm that E. coli is the system of choice for the expression of recombinant fusion toxins of bacterial origin whereas we further demonstrate that saporin-based ITs are best expressed and recovered from P. pastoris cultures after yeast codon-usage optimization.


Assuntos
ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Imunotoxinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Anticorpos de Cadeia Única/metabolismo , Fatores de Virulência/metabolismo , ADP Ribose Transferases/genética , Toxinas Bacterianas/genética , Western Blotting , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/genética , Escherichia coli/metabolismo , Exotoxinas/genética , Humanos , Imunotoxinas/genética , Pichia/genética , Pichia/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Saporinas , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Fatores de Virulência/genética , Exotoxina A de Pseudomonas aeruginosa
7.
Plant J ; 72(6): 1015-26, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22966775

RESUMO

The glutenin fraction of wheat storage proteins consists of large polymers in which high- and low-molecular-weight subunits are connected by inter-chain disulfide bonds. We found that assembly of a low-molecular-weight glutenin subunit in the endoplasmic reticulum is a rapid process that leads to accumulation of various oligomeric forms, and that this assembly is sensitive to perturbation of the cellular redox environment. In endoplasmic reticulum-derived microsomes, low-molecular-weight glutenin subunits are subjected to hyper-polymerization, indicating that cytosolic factors play an important role in limiting polymer size. Addition of physiological concentrations of reduced glutathione is sufficient to maintain the original polymerization pattern of the glutenin subunits upon cytosol dilution. Furthermore, we show that a low-molecular-weight glutenin subunit can be glutathionylated in endoplasmic reticulum-derived microsomes, and that it can be directly reduced by glutathione in vitro. These results indicate that glutenin polymerization is sensitive to changes in the redox state of the cell, and suggest that the presence of a reducing cytosolic environment plays an important role in regulating disulfide bond formation in the endoplasmic reticulum of plant cells.


Assuntos
Glutens/metabolismo , Triticum/metabolismo , Retículo Endoplasmático/metabolismo , Expressão Gênica , Glutationa/metabolismo , Peso Molecular , Oxirredução , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimerização , Dobramento de Proteína , Protoplastos , Nicotiana/genética , Nicotiana/metabolismo , Transgenes , Triticum/genética
8.
Plant J ; 65(2): 218-29, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21223387

RESUMO

The fate of the type I ribosome-inactivating protein (RIP) saporin when initially targeted to the endoplasmic reticulum (ER) in tobacco protoplasts has been examined. We find that saporin expression causes a marked decrease in protein synthesis, indicating that a fraction of the toxin reaches the cytosol and inactivates tobacco ribosomes. We determined that saporin is largely secreted but some is retained intracellularly, most likely in a vacuolar compartment, thus behaving very differently from the prototype RIP ricin A chain. We also find that the signal peptide can interfere with the catalytic activity of saporin when the protein fails to be targeted to the ER membrane, and that saporin toxicity undergoes signal sequence-specific regulation when the host cell is subjected to ER stress. Replacement of the saporin signal peptide with that of the ER chaperone BiP reduces saporin toxicity and makes it independent of cell stress. We propose that this stress-induced toxicity may have a role in pathogen defence.


Assuntos
Sinais Direcionadores de Proteínas/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Ribossomos/metabolismo , Saponaria/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glicosilação , Espaço Intracelular/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Sinais Direcionadores de Proteínas/genética , Inibidores da Síntese de Proteínas/metabolismo , Inibidores da Síntese de Proteínas/toxicidade , Transporte Proteico , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Ribossomos/efeitos dos fármacos , Saponaria/genética , Saponaria/toxicidade , Saporinas , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo
9.
FASEB J ; 24(1): 253-65, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19786581

RESUMO

Most of the targeting moieties, such as antibody fragments or growth factor domains, used to construct targeted toxins for anticancer therapy derive from secretory proteins. These normally fold in the oxidative environment of the endoplasmic reticulum, and hence their folding in bacterial cells can be quite inefficient. For instance, only low amounts of properly folded antimetastatic chimera constituted by the amino-terminal fragment of human urokinase (ATF) fused to the plant ribosome-inactivating protein saporin could be recovered. ATF-saporin was instead secreted efficiently when expressed in eukaryotic cells protected from autointoxication with neutralizing anti-saporin antibodies. Pichia pastoris is a microbial eukaryotic host where these domains can fold into a transport-competent conformation and reach the extracellular medium. We show here that despite some host toxicity codon-usage optimization greatly increased the expression levels of active saporin but not those of an active-site mutant SAP-KQ in GS115 (his4) strain. The lack of any toxicity associated with expression of the latter confirmed that toxicity is due to saporin catalytic activity. Nevertheless, GS115 (his4) cells in flask culture secreted 3.5 mg/L of a histidine-tagged ATF-saporin chimera showing an IC(50) of 6 x 10(-11) M against U937 cells, thus demonstrating the suitability of this expression platform for secretion of toxic saporin-based chimeras.


Assuntos
Imunotoxinas/genética , Imunotoxinas/metabolismo , N-Glicosil Hidrolases/biossíntese , N-Glicosil Hidrolases/genética , Pichia/genética , Pichia/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Inativadoras de Ribossomos Tipo 1/biossíntese , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Ativador de Plasminogênio Tipo Uroquinase/biossíntese , Ativador de Plasminogênio Tipo Uroquinase/genética , Sequência de Bases , Sítios de Ligação/genética , Códon/genética , Primers do DNA/genética , Expressão Gênica , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/toxicidade , Proteínas de Plantas/toxicidade , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/toxicidade , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Saporinas , Transformação Genética , Células U937 , Ativador de Plasminogênio Tipo Uroquinase/toxicidade
10.
Plant Physiol ; 149(1): 412-23, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19005088

RESUMO

Wheat (Triticum spp.) grains contain large protein polymers constituted by two main classes of polypeptides: the high-molecular-weight glutenin subunits and the low-molecular-weight glutenin subunits (LMW-GS). These polymers are among the largest protein molecules known in nature and are the main determinants of the superior technological properties of wheat flours. However, little is known about the mechanisms controlling the assembly of the different subunits and the way they are arranged in the final polymer. Here, we have addressed these issues by analyzing the formation of interchain disulfide bonds between identical and different LMW-GS and by studying the assembly of mutants lacking individual intrachain disulfides. Our results indicate that individual cysteine residues that remain available for disulfide bond formation in the folded monomer can form interchain disulfide bonds with a variety of different cysteine residues present in a companion subunit. These results imply that the coordinated expression of many different LMW-GS in wheat endosperm cells can potentially lead to the formation of a large set of distinct polymeric structures, in which subunits can be arranged in different configurations. In addition, we show that not all intrachain disulfide bonds are necessary for the generation of an assembly-competent structure and that the retention of a LMW-GS in the early secretory pathway is not dependent on polymer formation.


Assuntos
Retículo Endoplasmático/metabolismo , Glutens/biossíntese , Dobramento de Proteína , Triticum/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Nicotiana/metabolismo
11.
J Biol Chem ; 283(48): 33276-86, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18832379

RESUMO

The B chain of ricin was expressed and delivered to the endoplasmic reticulum of tobacco protoplasts where it disappeared with time in a manner consistent with degradation. This turnover did not occur in the vacuoles or upon secretion. Indeed, several lines of evidence indicate that, in contrast to the turnover of endoplasmic reticulum-targeted ricin A chain in the cytosol, the bulk of expressed ricin B chain was degraded in the secretory pathway.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Ricina/metabolismo , Citosol/metabolismo , Protoplastos/citologia , Ricina/farmacologia , Nicotiana/citologia , Vacúolos/metabolismo , Proteína com Valosina
12.
J Biol Chem ; 283(23): 15869-77, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18420588

RESUMO

When the catalytic A subunits of the castor bean toxins ricin and Ricinus communis agglutinin (denoted as RTA and RCA A, respectively) are delivered into the endoplasmic reticulum (ER) of tobacco protoplasts, they become substrates for ER-associated protein degradation (ERAD). As such, these orphan polypeptides are retro-translocated to the cytosol, where a significant proportion of each protein is degraded by proteasomes. Here we begin to characterize the ERAD pathway in plant cells, showing that retro-translocation of these lysine-deficient glycoproteins requires the ATPase activity of cytosolic CDC48. Lysine polyubiquitination is not obligatory for this step. We also show that although RCA A is found in a mannose-untrimmed form prior to its retro-translocation, a significant proportion of newly synthesized RTA cycles via the Golgi and becomes modified by downstream glycosylation enzymes. Despite these differences, both proteins are similarly retro-translocated.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Nicotiana/metabolismo , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Ricina/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologia , Protoplastos/citologia , Nicotiana/citologia , Ubiquitinação/fisiologia , Proteína com Valosina
13.
Methods Mol Biol ; 375: 107-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17634599

RESUMO

The oocytes of the South African clawed frog Xenopus laevis have been widely used as a reliable system for the expression and characterization of different types of proteins, including ion channels and membrane receptors. The large size and resilience of these oocytes make them easy to handle and to microinject with different molecules such as natural mRNAs, cRNAs, and antibodies. A variety of methods can then be used to monitor the expression of the proteins encoded by the microinjected mRNA/cRNA, and to perform a functional characterization of the heterologous polypeptides. In this chapter, after describing the equipment required to maintain X. laevis in the laboratory and to set up a microinjection system, we provide detailed procedures for oocyte isolation, micropipet and cRNA preparation, and oocyte microinjection. A method for the labeling of oocyte-synthesized proteins and for the immunological detection of the heterologous polypeptides is also described.


Assuntos
Biologia Molecular/métodos , Oócitos/metabolismo , Proteínas/metabolismo , Animais , Microinjeções , Proteínas/genética , RNA Mensageiro/metabolismo , Xenopus laevis
14.
J Biol Chem ; 281(33): 23377-85, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16774920

RESUMO

The plant toxin ricin is synthesized in castor bean seeds as an endoplasmic reticulum (ER)-targeted precursor. Removal of the signal peptide generates proricin in which the mature A- and B-chains are joined by an intervening propeptide and a 9-residue propeptide persists at the N terminus. The two propeptides are ultimately removed in protein storage vacuoles, where ricin accumulates. Here we have demonstrated that the N-terminal propeptide of proricin acts as a nonspecific spacer to ensure efficient ER import and glycosylation. Indeed, when absent from the N terminus of ricin A-chain, the non-imported material remained tethered to the cytosolic face of the ER membrane, presumably by the signal peptide. This species appeared toxic to ribosomes. The propeptide does not, however, influence catalytic activity per se or the vacuolar targeting of proricin or the rate of retrotranslocation/degradation of A-chain in the cytosol. The likely implications of these findings to the survival of the toxin-producing tissue are discussed.


Assuntos
Nicotiana/metabolismo , Fragmentos de Peptídeos/química , Precursores de Proteínas/química , Subunidades Proteicas/química , Protoplastos/metabolismo , Ricina/química , Sequência de Aminoácidos , Transporte Biológico/genética , Ricinus communis , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glicosilação , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Protoplastos/química , Ricina/genética , Ricina/metabolismo , Nicotiana/química , Nicotiana/citologia
15.
FEBS J ; 272(19): 4983-95, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16176271

RESUMO

Several protein toxins, such as the potent plant toxin ricin, enter mammalian cells by endocytosis and undergo retrograde transport via the Golgi complex to reach the endoplasmic reticulum (ER). In this compartment the catalytic moieties exploit the ER-associated degradation (ERAD) pathway to reach their cytosolic targets. Bacterial toxins such as cholera toxin or Pseudomonas exotoxin A carry KDEL or KDEL-like C-terminal tetrapeptides for efficient delivery to the ER. Chimeric toxins containing monomeric plant ribosome-inactivating proteins linked to various targeting moieties are highly cytotoxic, but it remains unclear how these molecules travel within the target cell to reach cytosolic ribosomes. We investigated the intracellular pathways of saporin, a monomeric plant ribosome-inactivating protein that can enter cells by receptor-mediated endocytosis. Saporin toxicity was not affected by treatment with Brefeldin A or chloroquine, indicating that this toxin follows a Golgi-independent pathway to the cytosol and does not require a low pH for membrane translocation. In intoxicated Vero or HeLa cells, ricin but not saporin could be clearly visualized in the Golgi complex using immunofluorescence. The saporin signal was not evident in the Golgi, but was found to partially overlap with that of a late endosome/lysosome marker. Consistently, the toxicities of saporin or saporin-based targeted chimeric polypeptides were not enhanced by the addition of ER retrieval sequences. Thus, the intracellular movement of saporin differs from that followed by ricin and other protein toxins that rely on Golgi-mediated retrograde transport to reach their retrotranslocation site.


Assuntos
Citosol/metabolismo , Espaço Intracelular/metabolismo , Ricina/metabolismo , Saponinas/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Mutação/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Ricina/genética , Ricina/toxicidade , Saponinas/genética , Saponinas/toxicidade , Xenopus
16.
Plant Physiol ; 137(1): 287-96, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15618412

RESUMO

Proteins that fail to fold in the endoplasmic reticulum (ER) or cannot find a pattern for assembly are often disposed of by a process named ER-associated degradation (ERAD), which involves transport of the substrate protein across the ER membrane (dislocation) followed by rapid proteasome-mediated proteolysis. Different ERAD substrates have been shown to be ubiquitinated during or soon after dislocation, and an active ubiquitination machinery has been found to be required for the dislocation of certain defective proteins. We have previously shown that, when expressed in tobacco (Nicotiana tabacum) protoplasts, the A chain of the heterodimeric toxin ricin is degraded by a pathway that closely resembles ERAD but is characterized by an unusual uncoupling between the dislocation and the degradation steps. Since lysine (Lys) residues are a major target for ubiquitination, we have investigated the effects of changing the Lys content on the retrotranslocation and degradation of ricin A chain in tobacco protoplasts. Here we show that modulating the number of Lys residues does not affect recognition events within the ER lumen nor the transport of the protein from this compartment to the cytosol. Rather, the introduced modifications have a clear impact on the degradation of the dislocated protein. While the substitution of the two Lys residues present in ricin A chain with arginine slowed down degradation, the introduction of four extra lysyl residues had an opposite effect and converted the ricin A chain to a standard ERAD substrate that is disposed via a process in which dislocation and degradation steps are tightly coupled.


Assuntos
Retículo Endoplasmático/metabolismo , Ricina/metabolismo , Cinética , Lisina , Protoplastos/metabolismo , Ricina/química , Nicotiana
17.
Plant Mol Biol ; 51(5): 631-41, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12678552

RESUMO

Ricin is synthesised as an ER-targeted precursor containing an enzymatic A chain and a galactose-binding B chain separated by a 12-amino acid linker propeptide. This internal propeptide is known to contain a sequence-specific vacuolar sorting signal whose functionality depends on the presence of an isoleucine residue. Conversion of this isoleucine to glycine completely abolished vacuolar targeting of proricin and led to its secretion. However, when this mutated signal was positioned at the C-terminus of a normally secreted reporter, vacuolar targeting of a significant fraction still occurred. Likewise, when the corrupted linker was C-terminally exposed within its natural context following the mature ricin A chain, and then co-expressed with ricin B chain, toxin heterodimers were still partially transported to tobacco cell vacuoles. By contrast, when placed at the N-terminus of the secreted reporter, or at the N-terminus of ricin B chain for co-expression with ricin A chain, the propeptide behaved most strikingly as a sequence-specific vacuolar targeting signal that, when mutated, resulted in complete secretion of the proteins. It would appear that the position of the linker peptide influences the specificity of its vacuolar targeting function.


Assuntos
Oligopeptídeos/genética , Precursores de Proteínas/genética , Ricina/genética , Vacúolos/metabolismo , Sequência de Aminoácidos , Transporte Biológico/genética , Transporte Biológico/fisiologia , Retículo Endoplasmático/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Subunidades Proteicas/genética , Protoplastos/citologia , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ricina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo
18.
Curr Biol ; 12(5): R182-4, 2002 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11882310

RESUMO

Misfolded or unassembled proteins present in the lumen of the endoplasmic reticulum are exported to the cytosol and degraded. Recent studies have implicated a complex containing the AAA ATPase Cdc48p/p97 in the export process.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Transporte Biológico Ativo , Humanos , Modelos Biológicos , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA