Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2099, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833239

RESUMO

In Duchenne muscular dystrophy (DMD), sarcolemma fragility and myofiber necrosis produce cellular debris that attract inflammatory cells. Macrophages and T-lymphocytes infiltrate muscles in response to damage-associated molecular pattern signalling and the release of TNF-α, TGF-ß and interleukins prevent skeletal muscle improvement from the inflammation. This immunological scenario was extended by the discovery of a specific response to muscle antigens and a role for regulatory T cells (Tregs) in muscle regeneration. Normally, autoimmunity is avoided by autoreactive T-lymphocyte deletion within thymus, while in the periphery Tregs monitor effector T-cells escaping from central regulatory control. Here, we report impairment of thymus architecture of mdx mice together with decreased expression of ghrelin, autophagy dysfunction and AIRE down-regulation. Transplantation of dystrophic thymus in recipient nude mice determine the up-regulation of inflammatory/fibrotic markers, marked metabolic breakdown that leads to muscle atrophy and loss of force. These results indicate that involution of dystrophic thymus exacerbates muscular dystrophy by altering central immune tolerance.


Assuntos
Tolerância Imunológica/imunologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Distrofia Muscular Animal/patologia , Timo/patologia , Animais , Autofagia/fisiologia , Grelina/biossíntese , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Nus , Distrofia Muscular de Duchenne/patologia , Linfócitos T/transplante , Linfócitos T Reguladores/imunologia , Timo/transplante , Fatores de Transcrição/biossíntese , Proteína AIRE
2.
Cell ; 155(6): 1282-95, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315098

RESUMO

Long recognized to be potent suppressors of immune responses, Foxp3(+)CD4(+) regulatory T (Treg) cells are being rediscovered as regulators of nonimmunological processes. We describe a phenotypically and functionally distinct population of Treg cells that rapidly accumulated in the acutely injured skeletal muscle of mice, just as invading myeloid-lineage cells switched from a proinflammatory to a proregenerative state. A Treg population of similar phenotype accumulated in muscles of genetically dystrophic mice. Punctual depletion of Treg cells during the repair process prolonged the proinflammatory infiltrate and impaired muscle repair, while treatments that increased or decreased Treg activities diminished or enhanced (respectively) muscle damage in a dystrophy model. Muscle Treg cells expressed the growth factor Amphiregulin, which acted directly on muscle satellite cells in vitro and improved muscle repair in vivo. Thus, Treg cells and their products may provide new therapeutic opportunities for wound repair and muscular dystrophies.


Assuntos
Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Regeneração , Linfócitos T Reguladores/fisiologia , Anfirregulina , Animais , Família de Proteínas EGF , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Tecido Linfoide/citologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/imunologia , Músculo Esquelético/lesões , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Distrofias Musculares/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Transcriptoma
3.
Curr Top Dev Biol ; 92: 367-409, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20816402

RESUMO

Stem cells are rare and unique precursor cells that participate in the building and rebuilding of tissues and organs during embryogenesis, postnatal growth, and injury repair. Stem cells are distinctively endowed with the ability to both self-renew and differentiate, such that they can replenish the stem cell pool while continuing to produce the differentiated daughter cells that are essential for tissue function. Stem cell self-renewal/differentiation decisions must be carefully controlled during organogenesis, tissue homeostasis, and regeneration, as failure in stem cell maintenance or activation can lead to progressive tissue wasting, while unchecked self-renewal is a hallmark of many cancers. Here, we review evidence implicating the Notch signaling pathway, an evolutionarily conserved cell fate determinant with widespread roles in a variety of tissues and organisms, as a crucial regulator of stem cell behavior. As discussed below, this pathway plays varied and critical roles at multiple stages of organismal development, in lineage-specific differentiation of pluripotent embryonic stem cells, and in controlling stem cell numbers and activity in the context of age-related tissue degeneration, injury-induced tissue repair, and malignancy.


Assuntos
Diferenciação Celular , Receptores Notch/metabolismo , Regeneração , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Humanos
4.
Cell ; 134(1): 37-47, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614009

RESUMO

Satellite cells reside beneath the basal lamina of skeletal muscle fibers and include cells that act as precursors for muscle growth and repair. Although they share a common anatomical localization and typically are considered a homogeneous population, satellite cells actually exhibit substantial heterogeneity. We used cell-surface marker expression to purify from the satellite cell pool a distinct population of skeletal muscle precursors (SMPs) that function as muscle stem cells. When engrafted into muscle of dystrophin-deficient mdx mice, purified SMPs contributed to up to 94% of myofibers, restoring dystrophin expression and significantly improving muscle histology and contractile function. Transplanted SMPs also entered the satellite cell compartment, renewing the endogenous stem cell pool and participating in subsequent rounds of injury repair. Together, these studies indicate the presence in adult skeletal muscle of prospectively isolatable muscle-forming stem cells and directly demonstrate the efficacy of myogenic stem cell transplant for treating muscle degenerative disease.


Assuntos
Células-Tronco Adultas/citologia , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Células-Tronco Adultas/química , Animais , Separação Celular , Distrofina/genética , Distrofina/metabolismo , Humanos , Proteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/terapia , Células Satélites de Músculo Esquelético/química , Transplante de Células-Tronco
5.
J Cell Sci ; 119(Pt 15): 3117-27, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16835268

RESUMO

Myoblast fusion is a highly regulated process that is important during muscle development and myofiber repair and is also likely to play a key role in the incorporation of donor cells in myofibers for cell-based therapy. Although several proteins involved in muscle cell fusion in Drosophila are known, less information is available on the regulation of this process in vertebrates, including humans. To identify proteins that are regulated during fusion of human myoblasts, microarray studies were performed on samples obtained from human fetal skeletal muscle of seven individuals. Primary muscle cells were isolated, expanded, induced to fuse in vitro, and gene expression comparisons were performed between myoblasts and early or late myotubes. Among the regulated genes, melanoma cell adhesion molecule (M-CAM) was found to be significantly downregulated during human fetal muscle cell fusion. M-CAM expression was confirmed on activated myoblasts, both in vitro and in vivo, and on myoendothelial cells (M-CAM(+) CD31(+)), which were positive for the myogenic markers desmin and MyoD. Lastly, in vitro functional studies using M-CAM RNA knockdown demonstrated that inhibition of M-CAM expression enhances myoblast fusion. These studies identify M-CAM as a novel marker for myogenic progenitors in human fetal muscle and confirm that downregulation of this protein promotes myoblast fusion.


Assuntos
Biomarcadores/metabolismo , Antígeno CD146/metabolismo , Fusão Celular , Feto/anatomia & histologia , Músculo Esquelético , Mioblastos/fisiologia , Adulto , Animais , Antígeno CD146/genética , Fracionamento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Músculo Esquelético/fisiologia , Mioblastos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA