Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Gastroenterol Hepatol ; 22(1): 81-90.e4, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406954

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD)-related fibrosis is heritable, but it is unclear how family history may be used to identify first-degree relatives with advanced fibrosis. We aimed to develop and validate a simple risk score to identify first-degree relatives of probands who have undergone assessment of liver fibrosis who are at higher risk of NAFLD with advanced fibrosis. METHODS: This prospective, cross-sectional, familial study consisted of a derivation cohort from San Diego, California, and a validation cohort from Helsinki, Finland. This study included consecutive adult probands (n = 242) with NAFLD and advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 of their first-degree relatives. All included probands and first-degree relatives underwent evaluation of liver fibrosis, the majority by magnetic resonance elastography. RESULTS: A total of 396 first-degree relatives (64% male) were included. The median age and body mass index were 47 years (interquartile range, 32-62 y) and 27.6 kg/m2 (interquartile range, 24.1-32.5 kg/m2), respectively. Age (1 point), type 2 diabetes (1 point), obesity (2 points), and proband with NAFLD and advanced fibrosis (2 points) were predictors of advanced fibrosis among first-degree relatives in the derivation cohort (n = 220) and formed the NAFLD Familial Risk Score. The area under the receiver operator characteristic curve of the NAFLD Familial Risk Score for detecting advanced fibrosis was 0.94 in the validation cohort (n = 176). The NAFLD Familial Risk Score outperformed the Fibrosis-4 index in the validation cohort (area under the receiver operator characteristic curve, 0.94 vs 0.70; P = .02). CONCLUSIONS: The NAFLD Familial Risk Score is a simple and accurate clinical tool to identify advanced fibrosis in first-degree relatives. These data may have implications for surveillance in NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Masculino , Feminino , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Transversais , Estudos Prospectivos , Fatores de Risco , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Predisposição Genética para Doença , Fígado/patologia , Biópsia
2.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317632

RESUMO

BACKGROUNDA pilot, single-center study showed that first-degree relatives of probands with nonalcoholic fatty liver disease (NAFLD) cirrhosis have a high risk of advanced fibrosis. We aimed to validate these findings using 2 independent cohorts from the US and Europe.METHODSThis prospective study included probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD, with at least 1 first-degree relative. A total of 396 first-degree relatives - 220 in a derivation cohort and 176 in a validation cohort - were enrolled in the study, and liver fibrosis was evaluated using magnetic resonance elastography and other noninvasive imaging modalities. The primary outcome was prevalence of advanced fibrosis in first-degree relatives.RESULTSPrevalence of advanced fibrosis in first-degree relatives of probands with NAFLD with advanced fibrosis, NAFLD without advanced fibrosis, and non-NAFLD was 15.6%, 5.9%, and 1.3%, respectively (P = 0.002), in the derivation cohort, and 14.0%, 2.6%, and 1.3%, respectively (P = 0.004), in the validation cohort. In multivariable-adjusted logistic regression models, age of ≥50 years (adjusted OR [aOR]: 2.63, 95% CI 1.0-6.7), male sex (aOR: 3.79, 95% CI 1.6-9.2), diabetes mellitus (aOR: 3.37, 95% CI 1.3-9), and a first-degree relative with NAFLD with advanced fibrosis (aOR: 11.8, 95% CI 2.5-57) were significant predictors of presence of advanced fibrosis (all P < 0.05).CONCLUSIONFirst-degree relatives of probands with NAFLD with advanced fibrosis have significantly increased risk of advanced fibrosis. Routine screening should be done in the first-degree relatives of patients with advanced fibrosis.FUNDINGSupported by NCATS (5UL1TR001442), NIDDK (U01DK061734, U01DK130190, R01DK106419, R01DK121378, R01DK124318, P30DK120515, K23DK119460), NHLBI (P01HL147835), and NIAAA (U01AA029019); Academy of Finland grant 309263; the Novo Nordisk, EVO, and Sigrid Jusélius Foundations; and the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 777377. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and the EFPIA.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Estudos Prospectivos , Técnicas de Imagem por Elasticidade/efeitos adversos , Técnicas de Imagem por Elasticidade/métodos , Cirrose Hepática/genética , Fibrose
3.
Commun Biol ; 3(1): 363, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647372

RESUMO

Histone H3.3 mutations are a hallmark of pediatric gliomas, but their core oncogenic mechanisms are not well-defined. To identify major effectors, we used CRISPR-Cas9 to introduce H3.3K27M and G34R mutations into previously H3.3-wildtype brain cells, while in parallel reverting the mutations in glioma cells back to wildtype. ChIP-seq analysis broadly linked K27M to altered H3K27me3 activity including within super-enhancers, which exhibited perturbed transcriptional function. This was largely independent of H3.3 DNA binding. The K27M and G34R mutations induced several of the same pathways suggesting key shared oncogenic mechanisms including activation of neurogenesis and NOTCH pathway genes. H3.3 mutant gliomas are also particularly sensitive to NOTCH pathway gene knockdown and drug inhibition, reducing their viability in culture. Reciprocal editing of cells generally produced reciprocal effects on tumorgenicity in xenograft assays. Overall, our findings define common and distinct K27M and G34R oncogenic mechanisms, including potentially targetable pathways.


Assuntos
Biomarcadores Tumorais/metabolismo , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Histonas/genética , Mutação , Receptores Notch/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Criança , Feminino , Glioma/genética , Glioma/metabolismo , Glicina/química , Glicina/genética , Histonas/química , Humanos , Lisina/química , Lisina/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores Notch/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Endocrinology ; 157(1): 4-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26451739

RESUMO

Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and ß, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and ß, increased myoblast differentiation whereas GC1, a selective TRß agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/ß-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRß PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Regeneração , Receptores alfa dos Hormônios Tireóideos/agonistas , Tri-Iodotironina/metabolismo , Acetatos/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Resistência a Medicamentos , Mutação da Fase de Leitura , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , Fenóis/farmacologia , Interferência de RNA , Receptores alfa dos Hormônios Tireóideos/antagonistas & inibidores , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/agonistas , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/análogos & derivados , Tri-Iodotironina/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
5.
PLoS One ; 7(8): e42177, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879915

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) have been shown to ameliorate diabetes in animal models. The mechanism, however, remains largely unknown. An unanswered question is whether BMSCs are able to differentiate into ß-cells in vivo, or whether BMSCs are able to mediate recovery and/or regeneration of endogenous ß-cells. Here we examined these questions by testing the ability of hBMSCs genetically modified to transiently express vascular endothelial growth factor (VEGF) or pancreatic-duodenal homeobox 1 (PDX1) to reverse diabetes and whether these cells were differentiated into ß-cells or mediated recovery through alternative mechanisms. Human BMSCs expressing VEGF and PDX1 reversed hyperglycemia in more than half of the diabetic mice and induced overall improved survival and weight maintenance in all mice. Recovery was sustained only in the mice treated with hBMSCs-VEGF. However, de novo ß-cell differentiation from human cells was observed in mice in both cases, treated with either hBMSCs-VEGF or hBMSCs- PDX1, confirmed by detectable level of serum human insulin. Sustained reversion of diabetes mediated by hBMSCs-VEGF was secondary to endogenous ß-cell regeneration and correlated with activation of the insulin/IGF receptor signaling pathway involved in maintaining ß-cell mass and function. Our study demonstrated the possible benefit of hBMSCs for the treatment of insulin-dependent diabetes and gives new insight into the mechanism of ß-cell recovery after injury mediated by hBMSC therapy.


Assuntos
Células da Medula Óssea/citologia , Células Secretoras de Insulina/fisiologia , Células-Tronco Mesenquimais/citologia , Regeneração/fisiologia , Adulto , Animais , Células da Medula Óssea/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/sangue , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/genética , Estreptozocina , Transativadores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Biochemistry ; 50(10): 1691-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21250659

RESUMO

Prostacyclin (PGI(2)) is a key vascular protector, metabolized from endogenous arachidonic acid (AA). Its actions are mediated through the PGI(2) receptor (IP) and nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ). Here, we found that PGI(2) is involved in regulating cellular microRNA (miRNA) expression through its receptors in a mouse adipose tissue-derived primary culture cell line expressing a novel hybrid enzyme gene (COX-1-10aa-PGIS), cyclooxygenase-1 (COX-1) and PGI(2) synthase (PGIS) linked with a 10-amino acid linker. The triple catalytic functions of the hybrid enzyme in these cells successfully redirected the endogenous AA metabolism toward a stable and dominant production of PGI(2). The miRNA microarray analysis of the cell line with upregulated PGI(2) revealed a significant upregulation (711, 148b, and 744) and downregulation of miRNAs of interest, which were reversed by antagonists of the IP and PPARγ receptors. Furthermore, we also found that the insulin-mediated lipid deposition was inhibited in the PGI(2)-upregulated adipocytes. The study also initiated a discussion that suggested that the endogenous PGI(2) inhibition of lipid deposition in adipocytes could involve miRNA-mediated inhibition of expression of the targeted genes. This indicated that PGI(2)-miRNA regulation could exist in broad pathophysiological processes involving PGI(2) (i.e., apoptosis, vascular inflammation, cancer, embryo implantation, and obesity).


Assuntos
Adipócitos/metabolismo , Regulação para Baixo , Epoprostenol/metabolismo , MicroRNAs/genética , Regulação para Cima , Animais , Células Cultivadas , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética
7.
Protein Eng Des Sel ; 22(12): 733-40, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19850676

RESUMO

Cyclooxygenase isoform-2 (COX-2) and microsomal prostaglandin E(2) synthase-1 (mPGES-1) are inducible enzymes that become up-regulated in inflammation and some cancers. It has been demonstrated that their coupling reaction of converting arachidonic acid (AA) into prostaglandin (PG) E(2) (PGE(2)) is responsible for inflammation and cancers. Understanding their coupling reactions at the molecular and cellular levels is a key step toward uncovering the pathological processes in inflammation. In this paper, we describe a structure-based enzyme engineering which produced a novel hybrid enzyme that mimics the coupling reactions of the inducible COX-2 and mPGES-1 in the native ER membrane. Based on the hypothesized membrane topologies and structures, the C-terminus of COX-2 was linked to the N-terminus of mPGES-1 through a transmembrane linker to form a hybrid enzyme, COX-2-10aa-mPGES-1. The engineered hybrid enzyme expressed in HEK293 cells exhibited strong triple-catalytic functions in the continuous conversion of AA into PGG(2) (catalytic-step 1), PGH(2) (catalytic-step 2) and PGE(2) (catalytic-step 3), a pro-inflammatory mediator. In addition, the hybrid enzyme was also able to directly convert dihomo-gamma-linolenic acid (DGLA) into PGG(1), PGH(1) and then PGE(1) (an anti-inflammatory mediator). The hybrid enzyme retained similar K(d) and V(max) values to that of the parent enzymes, suggesting that the configuration between COX-2 and mPGES-1 (through the transmembrane domain) could mimic the native conformation and membrane topologies of COX-2 and mPGES-1 in the cells. The results indicated that the quick coupling reaction between the native COX-2 and mPGES-1 (in converting AA into PGE(2)) occurred in a way so that both enzymes are localized near each other in a face-to-face orientation, where the COX-2 C-terminus faces the mPGES-1 N-terminus in the ER membrane. The COX-2-10aa-mPGES-1 hybrid enzyme engineering may be a novel approach in creating inflammation cell and animal models, which are particularly valuable targets for the next generation of NSAID screening.


Assuntos
Anti-Inflamatórios/farmacologia , Ácido Araquidônico/metabolismo , Dinoprostona/metabolismo , Engenharia de Proteínas , Biocatálise , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 2/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Técnicas Imunoenzimáticas , Inflamação/enzimologia , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Cinética , Prostaglandina-E Sintases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA