Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116893, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850653

RESUMO

Polymer-cationic mediated gene delivery is a well-stablished strategy of transient gene expression (TGE) in mammalian cell cultures. Nonetheless, its industrial implementation is hindered by the phenomenon known as cell density effect (CDE) that limits the cell density at which cultures can be efficiently transfected. The rise in personalized medicine and multiple cell and gene therapy approaches based on TGE, make more relevant to understand how to circumvent the CDE. A rational study upon DNA/PEI complex formation, stability and delivery during transfection of HEK293 cell cultures has been conducted, providing insights on the mechanisms for polyplexes uptake at low cell density and disruption at high cell density. DNA/PEI polyplexes were physiochemically characterized by coupling X-ray spectroscopy, confocal microscopy, cryo-transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR). Our results showed that the ionic strength of polyplexes significantly increased upon their addition to exhausted media. This was reverted by depleting extracellular vesicles (EVs) from the media. The increase in ionic strength led to polyplex aggregation and prevented efficient cell transfection which could be counterbalanced by implementing a simple media replacement (MR) step before transfection. Inhibiting and labeling specific cell-surface proteoglycans (PGs) species revealed different roles of PGs in polyplexes uptake. Importantly, the polyplexes uptake process seemed to be triggered by a coalescence phenomenon of HSPG like glypican-4 around polyplex entry points. Ultimately, this study provides new insights into PEI-based cell transfection methodologies, enabling to enhance transient transfection and mitigate the cell density effect (CDE).


Assuntos
DNA , Glipicanas , Transfecção , Humanos , Células HEK293 , Transfecção/métodos , Glipicanas/metabolismo , Glipicanas/genética , DNA/metabolismo , DNA/genética , Polietilenoimina/química , Proteoglicanas de Heparan Sulfato/metabolismo , Concentração Osmolar
2.
Mol Ther Methods Clin Dev ; 32(1): 101190, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38327808

RESUMO

The hitherto unexplained reduction of cell-specific productivity in transient gene expression (TGE) at high cell density (HCD) is known as the cell density effect (CDE). It currently represents a major challenge in TGE-based bioprocess intensification. This phenomenon has been largely reported, but the molecular principles governing it are still unclear. The CDE is currently understood to be caused by the combination of an unknown inhibitory compound in the extracellular medium and an uncharacterized cellular change at HCD. This study investigates the role of extracellular vesicles (EVs) as extracellular inhibitors for transfection through the production of HIV-1 Gag virus-like particles (VLPs) via transient transfection in HEK293 cells. EV depletion from the extracellular medium restored transfection efficiency in conditions that suffer from the CDE, also enhancing VLP budding and improving production by 60%. Moreover, an alteration in endosomal formation was observed at HCD, sequestering polyplexes and preventing transfection. Overexpression of UDP-glucose ceramide glucosyltransferase (UGCG) enzyme removed intracellular polyplex sequestration, improving transfection efficiency. Combining EV depletion and UGCG overexpression improved transfection efficiency by ∼45% at 12 × 106 cells/mL. These results suggest that the interaction between polyplexes and extracellular and intracellular vesicles plays a crucial role in the CDE, providing insights for the development of strategies to mitigate its impact.

3.
Vaccines (Basel) ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38005972

RESUMO

The robustness, safety, versatility, and high immunogenicity of virus-like particles (VLPs) make them a promising approach for the generation of vaccines against a broad range of pathogens. VLPs are recombinant macromolecular structures that closely mimic the native conformation of viruses without carrying viral genetic material. Particularly, HIV-1 Gag-based VLPs are a suitable platform for the presentation of the SARS-CoV-2 Spike (S) protein on their surface. In this context, this work studies the effect of different rationally engineered mutations of the S protein to improve some of its characteristics. The studied variants harbored mutations such as proline substitutions for S stabilization, D614G from the early dominant pandemic form, the elimination of the S1/S2 furin cleavage site to improve S homogeneity, the suppression of a retention motif to favor its membrane localization, and cysteine substitutions to increase its immunogenicity and avoid potential undesired antibody-dependent enhancement (ADE) effects. The influence of the mutations on VLP expression was studied, as well as their immunogenic potential, by testing the recognition of the generated VLP variants by COVID-19 convalescent patients' sera. The results of this work are conceived to give insights on the selection of S protein candidates for their use as immunogens and to showcase the potential of VLPs as carriers for antigen presentation.

4.
NPJ Vaccines ; 8(1): 51, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024469

RESUMO

Antigen display on the surface of Virus-Like Particles (VLPs) improves immunogenicity compared to soluble proteins. We hypothesised that immune responses can be further improved by increasing the antigen density on the surface of VLPs. In this work, we report an HIV-1 Gag-based VLP platform engineered to maximise the presence of antigen on the VLP surface. An HIV-1 gp41-derived protein (Min), including the C-terminal part of gp41 and the transmembrane domain, was fused to HIV-1 Gag. This resulted in high-density MinGag-VLPs. These VLPs demonstrated to be highly immunogenic in animal models using either a homologous (VLP) or heterologous (DNA/VLP) vaccination regimen, with the latter yielding 10-fold higher anti-Gag and anti-Min antibody titres. Despite these strong humoral responses, immunisation with MinGag-VLPs did not induce neutralising antibodies. Nevertheless, antibodies were predominantly of an IgG2b/IgG2c profile and could efficiently bind CD16-2. Furthermore, we demonstrated that MinGag-VLP vaccination could mediate a functional effect and halt the progression of a Min-expressing tumour cell line in an in vivo mouse model.

5.
Biotechnol Bioeng ; 119(5): 1207-1221, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35112714

RESUMO

Human immunodeficiency virus 1 (HIV-1) virus-like particles (VLPs) are nanostructures derived from the self-assembly and cell budding of Gag polyprotein. Mimicking the native structure of the virus and being noninfectious, they represent promising candidates for the development of new vaccines as they elicit a strong immune response. In addition to this, the bounding membrane can be functionalized with exogenous antigens to target different diseases. Protein glycosylation depends strictly on the production platform and expression system used and the displayed glycosylation patterns may influence downstream processing as well as the immune response. One of the main challenges for the development of Gag VLP production bioprocess is the separation of VLPs and coproduced extracellular vesicles (EVs). In this study, porous graphitized carbon separation method coupled with mass spectrometry was used to characterize the N- and O- glycosylation profiles of Gag VLPs produced in HEK293 cells. We identified differential glycan signatures between VLPs and EVs that could pave the way for further separation and purification strategies to optimize downstream processing and move forward in VLP-based vaccine production technology.


Assuntos
Vesículas Extracelulares , HIV-1 , Vacinas de Partículas Semelhantes a Vírus , Glicosilação , Células HEK293 , Humanos , Vacinas de Partículas Semelhantes a Vírus/genética
6.
N Biotechnol ; 68: 87-96, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35151904

RESUMO

DNA delivery with polyethylenimine (PEI) has been widely used in the last three decades for the transfection of mammalian cells. Advances in novel characterization techniques at the nanometric scale offer new opportunities to revisit the physicochemical properties of DNA/PEI polyplexes that lead to efficient transfection. In this work, these properties are tuned by studying the synergies between simple parameters such as NaCl concentration, pH and incubation time in the DNA/PEI polyplex preparation protocol by means of Design of Experiments (DoE). By doing so, a model is obtained where an optimal NaCl concentration of 125 mM and an incubation time of 11 min provided the highest transfection yields. Correlation analyses between the physicochemical properties of DNA/PEI polyplexes and the predicted model responses revealed the existence of an optimal degree of aggregation in the pre-complexing solution to attain the highest transfection efficiencies. The presence of these micrometric DNA/PEI polyplex aggregates was confirmed by several nanoparticle characterization techniques including cryo-TEM, DLS and flow virometry. The findings provide a better understanding of the role of DNA/PEI aggregates in transient gene expression approaches, in particular considering that similar complexation protocols and saline solutions are widely used for the transfection of mammalian cell cultures.


Assuntos
DNA , Polietilenoimina , Animais , DNA/genética , Expressão Gênica , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Polietilenoimina/química , Transfecção
7.
Vaccines (Basel) ; 9(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809060

RESUMO

Foot and mouth disease is a livestock acute disease, causing economic losses in affected areas. Currently, control of this disease is performed by mandatory vaccination campaigns using inactivated viral vaccines. In this work, we describe the development of a chimeric VLP-based vaccine candidate for foot-and-mouth disease virus (FMDV), based on the co-expression of the HIV-1 Gag protein and a novel fusion rabies glycoprotein (RVG), which carries in its N-term the FMDV main antigen: the G-H loop. It is demonstrated by confocal microscopy that both Gag-GFP polyprotein and the G-H loop colocalize at the cell membrane and, that the Gag polyprotein of the HIV virus acts as a scaffold for enveloped VLPs that during the budding process acquires the proteins that are being expressed in the cell membrane. The obtained VLPs were spherical particles of 130 ± 40 nm in diameter (analyzed by TEM, Cryo-TEM and NTA) carrying an envelope membrane that efficiently display the GH-RVG on its surface (analyzed by gold immunolabeling). Immunostainings with a FMDV hyperimmune serum showed that the heterologous antigenic site, genetically fused to RVG, is recognized by specific G-H loop antibodies. Additionally, the cVLPs produced expose the G-H loop to the liquid surrounding (analyzed by specific ELISA). Finally, we confirmed that these FMD cVLPs are able to induce a specific humoral immune response, based on antibodies directed to the G-H loop in experimental animals.

8.
Biotechnol Bioeng ; 118(7): 2660-2675, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844274

RESUMO

The importance of developing new vaccine technologies towards versatile platforms that can cope with global virus outbreaks has been evidenced with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virus-like particles (VLPs) are a highly immunogenic, safe, and robust approach that can be used to base several vaccine candidates on. Particularly, HIV-1 Gag VLPs is a flexible system comprising a Gag core surrounded by a lipid bilayer that can be modified to present diverse types of membrane proteins or antigens against several diseases, like influenza, dengue, West Nile virus, or human papillomavirus, where it has been proven successful. The size distribution and structural characteristics of produced VLPs vary depending on the cell line used to produce them. In this study, we established an analytical method of characterization for the Gag protein core and clarified the current variability of Gag stoichiometry in HIV-1 VLPs depending on the cell-based production platform, directly determining the number of Gag molecules per VLP in each case. Three Gag peptides have been validated to quantify the number of monomers using parallel reaction monitoring, an accurate and fast, mass-spectrometry-based method that can be used to assess the quality of the produced Gag VLPs regardless of the cell line used. An average of 3617 ± 17 monomers per VLP was obtained for HEK293, substantially varying between platforms, including mammalian and insect cells. This offers a key advantage in quantification and quality control methods to characterize VLP production at a large scale to accelerate new recombinant vaccine production technologies.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Vírion , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Vacinas contra COVID-19 , Células HEK293 , HIV-1/genética , Humanos , Vírion/química , Vírion/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/análise , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
9.
J Proteome Res ; 19(11): 4516-4532, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32975947

RESUMO

Vaccine therapies based on virus-like particles (VLPs) are currently in the spotlight due to their potential for generating high immunogenic responses while presenting fewer side effects than conventional vaccines. These self-assembled nanostructures resemble the native conformation of the virus but lack genetic material. They are becoming a promising platform for vaccine candidates against several diseases due to the ability of modifying their membrane with antigens from different viruses. The coproduction of extracellular vesicles (EVs) when producing VLPs is a key phenomenon currently still under study. In order to characterize this extracellular environment, a quantitative proteomics approach has been carried out. Three conditions were studied: non-transfected, transfected with an empty plasmid as control, and transfected with a plasmid coding for HIV-1 Gag polyprotein. A shift in EV biogenesis has been detected upon transfection, changing the production from large to small EVs. Another remarkable trait found was the presence of DNA being secreted within vesicles smaller than 200 nm. Studying the protein profile of these biological nanocarriers, it was observed that EVs were reflecting an overall energy homeostasis disruption via mitochondrial protein deregulation. Also, immunomodulatory proteins like ITGB1, ENO3, and PRDX5 were identified and quantified in VLP and EV fractions. These findings provide insight on the nature of the VLP extracellular environment defining the characteristics and protein profile of EVs, with potential to develop new downstream separation strategies or using them as adjuvants in viral therapies.


Assuntos
Vesículas Extracelulares , Vacinas de Partículas Semelhantes a Vírus , Células HEK293 , Humanos , Transfecção , Vacinas de Partículas Semelhantes a Vírus/genética
10.
Biotechnol Bioeng ; 117(7): 1929-1945, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32242921

RESUMO

Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , Vírion/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Animais , Linhagem Celular , Expressão Gênica , Células HEK293 , Humanos , Nanopartículas/metabolismo , Transfecção
11.
Viruses ; 12(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079288

RESUMO

Virus-like particles (VLPs) have emerged as a powerful scaffold for antigen presentation and delivery strategies. Compared to single protein-based therapeutics, quality assessment requires a higher degree of refinement due to the structure of VLPs and their similar properties to extracellular vesicles (EVs). Advances in the field of nanotechnology with single particle and high-resolution analysis techniques provide appealing approaches to VLP characterization. In this study, six different biophysical methods have been assessed for the characterization of HIV-1-based VLPs produced in mammalian and insect cell platforms. Sample preparation and equipment set-up were optimized for the six strategies evaluated. Electron Microscopy (EM) disclosed the presence of several types of EVs within VLP preparations and cryogenic transmission electron microscopy (cryo-TEM) resulted in the best technique to resolve the VLP ultrastructure. The use of super-resolution fluorescence microscopy (SRFM), nanoparticle tracking analysis (NTA) and flow virometry enabled the high throughput quantification of VLPs. Interestingly, differences in the determination of nanoparticle concentration were observed between techniques. Moreover, NTA and flow virometry allowed the quantification of both EVs and VLPs within the same experiment while analyzing particle size distribution (PSD), simultaneously. These results provide new insights into the use of different analytical tools to monitor the production of nanoparticle-based biologicals and their associated contaminants.


Assuntos
HIV/ultraestrutura , Microscopia/métodos , Animais , Microscopia Crioeletrônica , Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/virologia , Células HEK293 , Humanos , Microscopia Eletrônica de Transmissão , Pesquisa Qualitativa , Células Sf9 , Imagem Individual de Molécula/métodos , Spodoptera , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Vírion/ultraestrutura
12.
Appl Microbiol Biotechnol ; 102(10): 4477-4487, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574615

RESUMO

Gag polyprotein from HIV-1 is able to generate virus-like particles (VLPs) when recombinantly expressed in animal cell platforms. HIV-1 VLP production in HEK293 cells can be improved by the use of different strategies for increasing product titers. One of them is the so-called extended gene expression (EGE), based on repeated medium exchanges and retransfections of the cell culture to prolong the production phase. Another approach is the media supplementation with gene expression enhancers such as valproic acid and caffeine, despite their detrimental effect on cell viability. Valproic acid is a histone deacetylase inhibitor while caffeine has a phosphodiesterase inhibition effect. Here, the combination of the EGE protocol with additive supplementation to maximize VLP production is first tested. As an alternative to the direct additive supplementation, the replacement of these chemical additives by iRNA for obtaining the same inhibition action is also tested. The combination of the EGE protocol with caffeine and valproic acid supplementation resulted in a 1.5-fold improvement in HIV-1 VLP production compared with the EGE protocol alone, representing an overall 18-fold improvement over conventional batch cultivation. shRNAs encoded in the expression vector were tested to substitute valproic acid and caffeine. This novel strategy enhanced VLP production by 2.3 fold without any detrimental effect on cell viability (91.7%) compared with the batch cultivation (92.0%). Finally, the combination of shRNA with EGE resulted in more than 15.6-fold improvement compared with the batch standard protocol traditionally used. The methodology developed enables the production of high titers of HIV-1 VLPs avoiding the toxic effects of additives.


Assuntos
HIV-1/fisiologia , Microbiologia Industrial/métodos , Vírion/genética , Animais , Técnicas de Cultura de Células , Expressão Gênica , Células HEK293 , HIV-1/genética , Humanos
13.
Biotechnol Bioeng ; 114(11): 2507-2517, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28667757

RESUMO

Transient transfection is a fast, flexible, and cost-effective approach to produce biological products. Despite the continued interest in transient transfection, little is known regarding the transfection process at the intracellular level, particularly for complex products, such as virus-like particles (VLPs). The kinetics of PEI-mediated transfection following an established in-house protocol is reported in this work with the aim of characterizing and understanding the complete process leading to VLP generation and identifying important events driving process improvement. For this purpose, DNA/PEI polyplexes' internalization in cells was tracked using Cy3 DNA staining. The production of a fluorescently labeled Gag polyprotein (a Gag-GFP fusion construct that forms fluorescent Gag-VLPs) was monitored by flow cytometry and confocal microscopy, and the VLP concentration in supernatants was measured by fluorometry. DNA/PEI polyplexes interact with the cell membrane immediately after polyplex addition to the cell culture. A linear increase in the number of cells expressing the protein is observed during the first 60 min of contact between the cells and polyplexes. No additional improvement in the number of cells expressing the protein (up to 60%) or VLP production (up to 1 × 1010 VLPs/mL) is observed with additional contact time between the cells and polyplexes. Polyplexes can be detected in the cytoplasm of transfected cells as early as 1.5 h post-transfection (hpt) and reach the nucleus approximately 4 hpt. GFP fluorescence is observed homogeneously in the cytoplasm of transfected cells 24 hpt, but generalized VLP budding is not observed by microscopy until 48 hpt. Although all cells have internalized a polyplex soon after transfection, only a fraction of cells (60%) express the fluorescent Gag protein. VLP production kinetics was also studied. Fluorescence in the supernatant (enveloped VLPs) is 40% less than total fluorescence, supernatant plus pellet (total Gag-GFP), indicating that there is a fraction of Gag that remains inside the cells. The maximum VLP concentration in the cell culture supernatant with cell viability >89% was observed at 72 hpt, which was determined to be the optimal harvest time. Biotechnol. Bioeng. 2017;114: 2507-2517. © 2017 Wiley Periodicals, Inc.


Assuntos
Produtos do Gene gag/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Transfecção/métodos , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Células HEK293 , Humanos , Proteínas Recombinantes/genética , Vacinas de Partículas Semelhantes a Vírus/genética
14.
J Virol Methods ; 193(1): 85-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707924

RESUMO

Upon expression, the Gag polyprotein of HIV-1 assembles spontaneously in the vicinity of the plasma membrane giving rise to enveloped virus-like particles (VLPs). These particulate immunogens offer great promise as HIV-1 vaccines. Robust VLP production and purification processes are required to generate VLPs of sufficient quality and quantity for both pre-clinical and clinical evaluation. The availability of simple, fast and reliable quantitation tools is critical to develop, optimize and monitor such processes. Traditionally, enzyme-linked immunosorbent assays (ELISA) are used to quantify p24 antigen concentrations, which reflect tightly virus particle concentrations. However, this quantitation technique is not only time-consuming, laborious and costly but it is also prone to methodological variability. As an alternative, the development and validation of a fluorescence-based quantitation assay for Gag VLPs is presented here. A Gag polyprotein fused to the enhanced green fluorescent protein was used for generation of fluorescent VLPs. A purified standard reference Gag-GFP VLP material was prepared and characterized in house. The method was validated according to ICH guidelines. The validation characteristics evaluated included accuracy, precision, specificity, linearity, range and limit of detection. The method showed to be specific for Gag-GFP. The fluorescence signal correlated well with p24 concentrations measured using a reference p24 ELISA assay. The method showed little variability compared to ELISA and was linear over a 3-log range. The limit of detection was ~10 ng of p24/mL. Finally, fluorescence-based titers were in good agreement with those obtained using transmission electron microscopy and nanoparticle tracking analysis. This simple, rapid and cost-effective quantitation assay should facilitate development and optimization of bioprocessing strategies for Gag-based VLPs.


Assuntos
HIV-1/isolamento & purificação , Coloração e Rotulagem/métodos , Carga Viral/métodos , Virossomos/isolamento & purificação , Fluorometria , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , HIV-1/genética , Humanos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Virossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA