RESUMO
Heat tolerance is a key feature of resilient animals. Offspring of animals that suffer environmental stress during pregnancy could show physiological, morphological, and metabolic modifications. This is due to a dynamic reprogramming of the epigenetics of the mammalian genome that occurs in the early life cycle. Thus, the aim of this study was to investigate the extent of the transgenerational effect of heat stress during the pregnancy of Italian Simmental cows. The effects of dam and granddam birth months (as indicator of pregnancy period) on their daughter and granddaughter estimated breeding values (EBV) for some dairy traits as well as of the temperature-humidity index (THI) during the pregnancy were tested. A total of 128,437 EBV (milk, fat, and protein yields, and somatic cell score) were provided by the Italian Association of Simmental Breeders. The best birth months (of both dam and granddam) for milk yield and protein yield were May and June, whereas the worst were January and March. Great-granddam pregnancies developed during the winter and spring seasons positively affected the EBV for milk and protein yields of their great-granddaughters; in contrast, pregnancies during summer and autumn had negative effects. These findings were confirmed by the effects of maximum and minimum THI in different parts of the great-granddam pregnancy on the performances of their great-granddaughters. Thus, a negative effect of high temperatures during the pregnancy of female ancestors was observed. Results of the present study suggest a transgenerational epigenetic inheritance in Italian Simmental cattle due to environmental stressors.
Assuntos
Herpesvirus Humano 4 , Lactação , Gravidez , Bovinos , Feminino , Animais , Lactação/fisiologia , Leite/metabolismo , Fenótipo , Temperatura Alta , Umidade , Itália , MamíferosRESUMO
Defining optimal nutrition in animals and humans remains a main scientific challenge. The objective of the work was to develop a dynamic model of reactive oxygen species (ROS)-polyunsaturated fatty acid (PUFA)-antioxidant homeostasis using the rabbit as a model. The problem entity was to evaluate the main metabolites generated from interactions between traits included in the conceptual model and identified by three main sub-models: (i) ROS generation, (ii) PUFA oxidation and (iii) antioxidant defence. A mathematical model (VENSIM software) that consisted of molecular stocks (INPUTs, OUTPUTs), exchange flows (intermediate OUTPUTs) and process rates was developed. The calibration was performed by using standard experimental data (Experiment 1), whereas the validation was carried out in Experiments 2 and 3 by using supra-nutritional dietary inputs (VIT E+ and PUFA+). The accuracy of the models was measured using 95% confidence intervals. Analytical OUTPUTs (ROS, PUFA, Vit E, Ascorbic acid, Iso-/NeuroProstanes, Aldehydes) were well described by the standard model. There was also good accuracy for the VIT E+ scenario, whereas some compensatory rates (Kc1-Kc4) were added to assess body compensation when high levels of dietary PUFA were administered (Experiment 3). In conclusion, the model can be very useful for predicting the effects of dietary treatments on the redox homeostasis of rabbits.
RESUMO
Glycolytic potential (GP) is one of the postmortem traits used to predict the quality of the final meat products. Despite that, the knowledge of the molecular and metabolic pathways controlling this trait is still not complete. To add some information on this field we used two pools of Italian Large White heavy pigs divergent for GP to investigate through a microarray approach the differences of gene expressions between the two pools. On the whole, 32 genes were differentially expressed, and among them 31 were overexpressed in low GP pool. These genes were involved in mitochondrial functions and adenosine triphosphate (ATP) biosynthetic processes, in calcium homeostasis, and in lipid metabolism, with Peroxisome proliferator-activated receptor (PPAR) signaling being a possible master regulator of the molecular differences observed between the two pools. The different GP levels between the two pools could have determined in low GP muscles a more rapid occurrence of the molecular cascade related to the events triggering cell death.
Assuntos
Músculos Isquiossurais , Carne , Animais , Glicólise/genética , Músculos Isquiossurais/metabolismo , Metabolismo dos Lipídeos/genética , Carne/análise , Músculo Esquelético/metabolismo , Suínos/genéticaRESUMO
Functional traits, such as fertility and lactation persistency, are becoming relevant breeding goals for dairy cattle. Fertility is a key element for herd profitability and animal welfare; in particular, calving interval (CIN) is an indicator of female fertility that can be easily recorded. Lactation persistency (LPE; i.e., the ability of a cow to maintain a high milk yield after the lactation peak) is economically important and is related to several other traits, such as feed efficiency, health, and reproduction. The selection of these functional traits is constrained by their low heritability. In this study, variance components for CIN and LPE in the Italian Simmental cattle breed were estimated using genomic and pedigree information under the single-step genomic framework. A data set of 594,257 CIN records (from 275,399 cows) and 285,213 LPE records (from 1563,389 cows) was considered. Phenotypes were limited up to the third parity. The pedigree contained about 2 million animals, and 7,246 genotypes were available. Lactation persistency was estimated using principal component analysis on test day records, with higher values of the second extracted principal component (PC2) values associated with lower LPE, and lower PC2 values associated with higher LPE. Heritability of CIN and LPE were estimated using single-trait repeatability models. A multiple-trait analysis using CIN and production traits (milk, fat, and protein yields) was performed to estimate genetic correlations among these traits. Heritability for CIN in the single-trait model was low (0.06 ± 0.002). Unfavorable genetic correlations were found between CIN and production traits. A measure of LPE was derived using principal component analysis on test day records. The heritability and repeatability of LPE were 0.11 ± 0.004 and 0.20 ± 0.02, respectively. Genetic correlation between CIN and LPE was weak but had a favorable direction. Despite the low heritability estimates, results of the present work suggest the possibility of including these traits in the Italian Simmental breeding program. The use of a single-step approach may provide better results for young genotyped animals without their own phenotypes.