Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2210, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472229

RESUMO

The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.


Assuntos
Proteínas Quinases , Transdução de Sinais , Proteínas Quinases/metabolismo , Fosforilação , Proteína de Replicação A/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Dano ao DNA , DNA de Cadeia Simples , Reparo do DNA
2.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360978

RESUMO

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tirosina/metabolismo , Mitose , Centrossomo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo
3.
iScience ; 27(1): 108655, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213617

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair mechanism that becomes activated in a subset of cancers to maintain telomere length. One of the defining features of ALT cells is the prevalence of extrachromosomal telomeric repeat (ECTR) DNA. Here, we identify that ALT cells engage in two modes of telomere synthesis. Non-productive telomere synthesis occurs during the G2 phase of the cell cycle and is characterized by newly synthesized internal telomeric regions that are not retained in the subsequent G1, coinciding with an induction of ECTR DNA. Productive telomere synthesis occurs specifically during the transition from G2 to mitosis and is defined as the extension of the telomere termini. While many proteins associated with break-induced telomere synthesis function in both non-productive and productive telomere synthesis, POLH specifically promotes productive telomere lengthening and suppresses non-productive telomere synthesis. These findings delineate the mechanism and cell cycle regulation of ALT-mediated telomere synthesis and extension.

4.
Cell Chem Biol ; 30(12): 1652-1665.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38065101

RESUMO

The TRF2 shelterin component is an essential regulator of telomere homeostasis and genomic stability. Mutations in the TRF2TRFH domain physically impair t-loop formation and prevent the recruitment of several factors that promote efficient telomere replication, causing telomeric DNA damage. Here, we design, synthesize, and biologically test covalent cyclic peptides that irreversibly target the TRF2TRFH domain. We identify APOD53 as our most promising compound, as it consistently induces a telomeric DNA damage response in cancer cell lines. APOD53 forms a covalent adduct with a reactive cysteine residue present in the TRF2TRFH domain and induces phenotypes consistent with TRF2TRFH domain mutants. These include induction of a telomeric DNA damage response, increased telomeric replication stress, and impaired recruitment of RTEL1 and SLX4 to telomeres. We demonstrate that APOD53 impairs cancer cell growth and find that co-treatment with APOD53 can exacerbate telomere replication stress caused by the G4 stabilizer RHPS4 and low dose aphidicolin (APH).


Assuntos
Peptídeos Cíclicos , Proteína 2 de Ligação a Repetições Teloméricas , Dano ao DNA , Peptídeos Cíclicos/farmacologia , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética , Domínios Proteicos , Linhagem Celular Tumoral
5.
Trends Cell Biol ; 31(10): 843-855, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34183232

RESUMO

The nucleus is a dynamic environment containing chromatin, membraneless organelles, and specialized molecular structures at the nuclear membrane. Within the spectrum of DNA repair activities are observations of increased mobility of damaged chromatin and the displacement of DNA lesions to specific nuclear environments. Here, we focus on the role that nuclear-specific filamentous actin plays in mobilizing damaged chromatin in response to DNA double-strand breaks and replication stress. We also examine nuclear pore complexes and promyelocytic leukemia-nuclear bodies as specialized platforms for homology-directed repair. The literature suggests an emerging model where specific types of DNA lesions are subjected to nuclear-derived forces that mobilize damaged chromatin and promote interaction with repair hubs to facilitate specialized repair reactions.


Assuntos
Condensados Biomoleculares , Cromatina , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Humanos , Corpos Nucleares
6.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33994371

RESUMO

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Assuntos
Carbazóis/administração & dosagem , Carbazóis/farmacologia , Cromatina/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Neuroblastoma/tratamento farmacológico , Panobinostat/administração & dosagem , Panobinostat/farmacologia , Animais , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Camundongos , Células Tumorais Cultivadas
7.
Clin Epigenetics ; 13(1): 37, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596994

RESUMO

BACKGROUND: BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programmes and cancer cell behaviour. RESULTS: Our investigation of SMARCA4 revealed that BRG1 is over-expressed in the majority of the 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programmes. Depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication, but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest. CONCLUSIONS: Our data have revealed that BRG1 promotes cell cycle progression and DNA replication, consistent with the increased cell proliferation associated with oncogenesis.


Assuntos
Proliferação de Células/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Replicação do DNA/genética , Regulação para Baixo , Expressão Gênica , Humanos , Masculino , Regiões Promotoras Genéticas , Transcrição Gênica/genética
8.
Nat Cell Biol ; 22(12): 1460-1470, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33257806

RESUMO

Filamentous actin (F-actin) provides cells with mechanical support and promotes the mobility of intracellular structures. Although F-actin is traditionally considered to be cytoplasmic, here we reveal that nuclear F-actin participates in the replication stress response. Using live and super-resolution imaging, we find that nuclear F-actin is polymerized in response to replication stress through a pathway regulated by ATR-dependent activation of mTORC1, and nucleation through IQGAP1, WASP and ARP2/3. During replication stress, nuclear F-actin increases the nuclear volume and sphericity to counteract nuclear deformation. Furthermore, F-actin and myosin II promote the mobility of stressed-replication foci to the nuclear periphery through increasingly diffusive motion and directed movements along the nuclear actin filaments. These actin functions promote replication stress repair and suppress chromosome and mitotic abnormalities. Moreover, we find that nuclear F-actin is polymerized in vivo in xenograft tumours after treatment with replication-stress-inducing chemotherapeutic agents, indicating that this pathway has a role in human disease.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Reparo do DNA/genética , Replicação do DNA/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animais , Antineoplásicos/farmacologia , Carboplatina/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Polimerização , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Genes Dev ; 34(23-24): 1619-1636, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122293

RESUMO

Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.


Assuntos
Replicação do DNA/genética , Poro Nuclear/patologia , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Humanos , Mitose/genética , Mutação , Neoplasias/genética , Neoplasias/fisiopatologia , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
10.
Cancers (Basel) ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882852

RESUMO

High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, ß-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division.

11.
Cancers (Basel) ; 12(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013098

RESUMO

Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB1 determines its cellular location.

12.
JHEP Rep ; 2(1): 100065, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32039406

RESUMO

BACKGROUND & AIMS: Genome editing technology has immense therapeutic potential and is likely to rapidly supplant contemporary gene addition approaches. Key advantages include the capacity to directly repair mutant loci with resultant recovery of physiological gene expression and maintenance of durable therapeutic effects in replicating cells. In this study, we aimed to repair a disease-causing point mutation in the ornithine transcarbamylase (OTC) locus in patient-derived primary human hepatocytes in vivo at therapeutically relevant levels. METHODS: Editing reagents for precise CRISPR/SaCas9-mediated cleavage and homology-directed repair (HDR) of the human OTC locus were first evaluated against an OTC minigene cassette transposed into the mouse liver. The editing efficacy of these reagents was then tested on the native OTC locus in patient-derived primary human hepatocytes xenografted into the FRG (Fah -/- Rag2 -/- Il2rg -/-) mouse liver. A highly human hepatotropic capsid (NP59) was used for adeno-associated virus (AAV)-mediated gene transfer. Editing events were characterised using next-generation sequencing and restoration of OTC expression was evaluated using immunofluorescence. RESULTS: Following AAV-mediated delivery of editing reagents to patient-derived primary human hepatocytes in vivo, OTC locus-specific cleavage was achieved at efficiencies of up to 72%. Importantly, successful editing was observed in up to 29% of OTC alleles at clinically relevant vector doses. No off-target editing events were observed at the top 10 in silico-predicted sites in the genome. CONCLUSIONS: We report efficient single-nucleotide correction of a disease-causing mutation in the OTC locus in patient-derived primary human hepatocytes in vivo at levels that, if recapitulated in the clinic, would provide benefit for even the most therapeutically challenging liver disorders. Key challenges for clinical translation include the cell cycle dependence of classical HDR and mitigation of unintended on- and off-target editing events. LAY SUMMARY: The ability to efficiently and safely correct disease-causing mutations remains the holy grail of gene therapy. Herein, we demonstrate, for the first time, efficient in vivo correction of a patient-specific disease-causing mutation in the OTC gene in primary human hepatocytes, using therapeutically relevant vector doses. We also highlight the challenges that need to be overcome for this technology to be translated into clinical practice.

13.
Sci Adv ; 5(10): eaav4409, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31616780

RESUMO

Telomerase is a ribonucleoprotein complex that catalyzes addition of telomeric DNA repeats to maintain telomeres in replicating cells. Here, we demonstrate that the telomerase protein hTERT performs an additional role at telomeres that is independent of telomerase catalytic activity yet essential for telomere integrity and cell proliferation. Short-term depletion of endogenous hTERT reduced the levels of heat shock protein 70 (Hsp70-1) and the telomere protective protein Apollo at telomeres, and induced telomere deprotection and cell cycle arrest, in the absence of telomere shortening. Short-term expression of hTERT promoted colocalization of Hsp70-1 with telomeres and Apollo and reduced numbers of deprotected telomeres, in a manner independent of telomerase catalytic activity. These data reveal a previously unidentified noncanonical function of hTERT that promotes formation of a telomere protective complex containing Hsp70-1 and Apollo and is essential for sustained proliferation of telomerase-positive cancer cells, likely contributing to the known cancer-promoting effects of both hTERT and Hsp70-1.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias/genética , Telomerase/genética
14.
Nat Commun ; 10(1): 4224, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530811

RESUMO

Mitotic catastrophe is a broad descriptor encompassing unclear mechanisms of cell death. Here we investigate replication stress-driven mitotic catastrophe in human cells and identify that replication stress principally induces mitotic death signalled through two independent pathways. In p53-compromised cells we find that lethal replication stress confers WAPL-dependent centromere cohesion defects that maintain spindle assembly checkpoint-dependent mitotic arrest in the same cell cycle. Mitotic arrest then drives cohesion fatigue and triggers mitotic death through a primary pathway of BAX/BAK-dependent apoptosis. Simultaneously, a secondary mitotic death pathway is engaged through non-canonical telomere deprotection, regulated by TRF2, Aurora B and ATM. Additionally, we find that suppressing mitotic death in replication stressed cells results in distinct cellular outcomes depending upon how cell death is averted. These data demonstrate how replication stress-induced mitotic catastrophe signals cell death with implications for cancer treatment and cancer genome evolution.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Replicação do DNA , Mitose , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Telômero/metabolismo , Morte Celular , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Neoplasias/fisiopatologia , Telômero/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
15.
Prog Biophys Mol Biol ; 147: 17-25, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30991055

RESUMO

DNA replication plays a central role in genome health. Deleterious alteration of replication dynamics, or "replication stress", is a key driver of genome instability and oncogenesis. The replication stress response is regulated by the ATR kinase, which functions to mitigate replication abnormalities through coordinated efforts that arrest the cell cycle and repair damaged replication forks. mTOR kinase regulates signaling networks that control cell growth and metabolism in response to environmental cues and cell stress. In this review, we discuss interconnectivity between the ATR and mTOR pathways, and provide putative mechanisms for mTOR engagement in DNA replication and the replication stress response. Finally, we describe how connectivity between mTOR and replication stress may be exploited for cancer therapy.


Assuntos
Replicação do DNA , Serina-Treonina Quinases TOR/metabolismo , Animais , Dano ao DNA , Humanos
16.
Proc Natl Acad Sci U S A ; 116(15): 7323-7332, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30918123

RESUMO

To investigate how chromatin architecture is spatiotemporally organized at a double-strand break (DSB) repair locus, we established a biophysical method to quantify chromatin compaction at the nucleosome level during the DNA damage response (DDR). The method is based on phasor image-correlation spectroscopy of histone fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) microscopy data acquired in live cells coexpressing H2B-eGFP and H2B-mCherry. This multiplexed approach generates spatiotemporal maps of nuclear-wide chromatin compaction that, when coupled with laser microirradiation-induced DSBs, quantify the size, stability, and spacing between compact chromatin foci throughout the DDR. Using this technology, we identify that ataxia-telangiectasia mutated (ATM) and RNF8 regulate rapid chromatin decompaction at DSBs and formation of compact chromatin foci surrounding the repair locus. This chromatin architecture serves to demarcate the repair locus from the surrounding nuclear environment and modulate 53BP1 mobility.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
J Cell Sci ; 132(5)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30745338

RESUMO

Cancers that utilize the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance are often difficult to treat and have a poor prognosis. They are also commonly deficient for expression of ATRX protein, a repressor of ALT activity, and a component of promyelocytic leukemia nuclear bodies (PML NBs) that are required for intrinsic immunity to various viruses. Here, we asked whether ATRX deficiency creates a vulnerability in ALT cancer cells that could be exploited for therapeutic purposes. We showed in a range of cell types that a mutant herpes simplex virus type 1 (HSV-1) lacking ICP0, a protein that degrades PML NB components including ATRX, was ten- to one thousand-fold more effective in infecting ATRX-deficient cells than wild-type ATRX-expressing cells. Infection of co-cultured primary and ATRX-deficient cancer cells revealed that mutant HSV-1 selectively killed ATRX-deficient cells. Sensitivity to mutant HSV-1 infection also correlated inversely with PML protein levels, and we showed that ATRX upregulates PML expression at both the transcriptional and post-transcriptional levels. These data provide a basis for predicting, based on ATRX or PML levels, which tumors will respond to a selective oncolytic herpesvirus.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Rim/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Nuclear Ligada ao X/deficiência , Animais , Morte Celular , Linhagem Celular Tumoral , Cricetinae , Herpes Simples/patologia , Humanos , Proteínas Imediatamente Precoces/genética , Imunidade Inata/genética , Rim/patologia , Mutação/genética , Terapia Viral Oncolítica , Proteína da Leucemia Promielocítica/genética , Homeostase do Telômero , Ubiquitina-Proteína Ligases/genética
18.
Mol Cell ; 71(4): 510-525.e6, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30033372

RESUMO

Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA por Junção de Extremidades , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitose , Domínios Proteicos , Telômero/ultraestrutura , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
19.
Oncogene ; 37(33): 4518-4533, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743597

RESUMO

MASTL kinase is essential for correct progression through mitosis, with loss of MASTL causing chromosome segregation errors, mitotic collapse and failure of cytokinesis. However, in cancer MASTL is most commonly amplified and overexpressed. This correlates with increased chromosome instability in breast cancer and poor patient survival in breast, ovarian and lung cancer. Global phosphoproteomic analysis of immortalised breast MCF10A cells engineered to overexpressed MASTL revealed disruption to desmosomes, actin cytoskeleton, PI3K/AKT/mTOR and p38 stress kinase signalling pathways. Notably, these pathways were also disrupted in patient samples that overexpress MASTL. In MCF10A cells, these alterations corresponded with a loss of contact inhibition and partial epithelial-mesenchymal transition, which disrupted migration and allowed cells to proliferate uncontrollably in 3D culture. Furthermore, MASTL overexpression increased aberrant mitotic divisions resulting in increased micronuclei formation. Mathematical modelling indicated that this delay was due to continued inhibition of PP2A-B55, which delayed timely mitotic exit. This corresponded with an increase in DNA damage and delayed transit through interphase. There were no significant alterations to replication kinetics upon MASTL overexpression, however, inhibition of p38 kinase rescued the interphase delay, suggesting the delay was a G2 DNA damage checkpoint response. Importantly, knockdown of MASTL, reduced cell proliferation, prevented invasion and metastasis of MDA-MB-231 breast cancer cells both in vitro and in vivo, indicating the potential of future therapies that target MASTL. Taken together, these results suggest that MASTL overexpression contributes to chromosome instability and metastasis, thereby decreasing breast cancer patient survival.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Instabilidade Cromossômica/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Citoesqueleto de Actina/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
20.
Curr Protoc Cytom ; 73: 12.40.1-12.40.31, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26132175

RESUMO

In cancer cells, telomere length maintenance occurs largely via the direct synthesis of TTAGGG repeats at chromosome ends by telomerase, or less frequently by the recombination-dependent alternative lengthening of telomeres (ALT) pathway. The latter is characterized by the atypical clustering of telomeres within promyelocytic leukemia (PML) nuclear bodies, which harbor proteins that are linked with DNA repair and recombination activity. For this reason, it is speculated that these associated PML bodies represent the sites of the recombination that maintains telomere length. The protocols described here can be employed for the routine investigation of the structural integrity of telomeres and the association of proteins at telomeres in normal cells, challenged cells, and archived formalin-fixed paraffin-embedded clinical tissue specimens that may have activated the ALT pathway.


Assuntos
Imunofluorescência/métodos , Telômero/metabolismo , Sequência de Bases , Adesão Celular , Centrifugação , Cromossomos , DNA/metabolismo , Humanos , Hibridização in Situ Fluorescente , Mitose , Troca de Cromátide Irmã , Bancos de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA