Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 176: 106005, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36717005

RESUMO

The Gram-negative bacteria Brucella abortus is a major cause of brucellosis in animals and humans. The host innate immune response to B. abortus is mainly associated with phagocytic cells such as dendritic cells, neutrophils, and macrophages. However, as mast cells naturally reside in the main bacterial entry sites they may be involved in bacterial recognition. At present, little is known about the role of mast cells during B. abortus infection. The role of the innate immune receptors TLR2 and TLR4 in activation of mast cells by B. abortus (strain RB51) infection was analyzed in this study. The results showed that B. abortus did not induce mast cell degranulation, but did induce the synthesis of the cytokines IL-1ß, IL-6, TNF-α, CCL3, CCL4, and CCL5. Furthermore, B. abortus stimulated key cell signaling molecules involved in mast cell activation such as p38 and NF-κB. Blockade of the receptors TLR2 and TLR4 decreased TNF-α and IL-6 release by mast cells in response to B. abortus. Taken together, our results demonstrate that mast cells are activated by B. abortus and may play a role in inducing an inflammatory response during the initial phase of the infection.


Assuntos
Brucella abortus , Brucelose , Humanos , Animais , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Mastócitos , Fator de Necrose Tumoral alfa , Interleucina-6
2.
Front Immunol ; 12: 650779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194428

RESUMO

Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1ß, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.


Assuntos
Interleucina-13/imunologia , Interleucina-6/imunologia , Listeria monocytogenes/imunologia , Mastócitos/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Degranulação Celular/imunologia , Degranulação Celular/fisiologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Ativação Enzimática/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Listeria monocytogenes/fisiologia , Mastócitos/microbiologia , Mastócitos/fisiologia , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Anticancer Agents Med Chem ; 21(11): 1451-1459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32723256

RESUMO

BACKGROUND AND OBJECTIVE: Histone Deacetylases (HDACs) are important therapeutic targets for many types of human cancers. A derivative of valproic acid, N-(2-hydroxyphenyl)-2-propylpentanamide (HOAAVPA), has antiproliferative properties on some cancer cell lines and inhibits the HDAC1 isoform. MATERIALS AND METHODS: In this work, HO-AAVPA was tested as an antiproliferative agent in U87-MG (human glioblastoma) and U-2 OS cells (human osteosarcoma), which are types of cancer that are difficult to treat, and its antiangiogenic properties were explored. RESULTS: HO-AAVPA had antiproliferative effects at 48h with an IC50=0.655mM in U87-MG cells and an IC50=0.453mM in U-2 OS cells. Additionally, in the colony formation assay, HO-AAVPA decreased the number of colonies by approximately 99% in both cell lines and induced apoptosis by 31.3% in the U-2 OS cell line and by 78.2% in the U87-MG cell line. Additionally, HO-AAVPA reduced the number of vessels in Chorioallantoic Membranes (CAMs) by approximately 67.74% and IL-6 levels in both cell lines suggesting that the biochemical mechanism on cancer cell of HO-AAVPA is different compared to VPA. CONCLUSION: HO-AAVPA has antiproliferative effects on glioblastoma and osteosarcoma and antiangiogenic properties.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Amidas/antagonistas & inibidores , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/patologia , Pentanos/antagonistas & inibidores , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
J Immunol Res ; 2019: 9678098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001564

RESUMO

Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.


Assuntos
Imunidade Adaptativa , Reposicionamento de Medicamentos , Imunidade Inata , Neoplasias/tratamento farmacológico , Ácido Valproico/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigênese Genética , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Humanos , Camundongos , Interferência de RNA
5.
Tuberculosis (Edinb) ; 114: 123-126, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711151

RESUMO

Tuberculosis is one of the leading causes of mortality worldwide, it is caused by Mycobacterium tuberculosis (Mtb), a bacteria that employs several strategies to evade the host immune response. For instance, Mtb interferes with the overexpression of class II transactivator (CIITA) in macrophages exposed to IFN-γ by inhibiting histone acetylation at its promoter, which can be reverted by the histone deacetylase inhibitor (HDACi) sodium butyrate. In this work, we evaluated whether a different HDACi, valproic acid (VPA), could revert the inhibition of gene expression induced by Mtb. J774 macrophages treated with VPA and IFN-γ unexpectedly induced a higher expression of the inducible nitric oxide synthase and a higher production of nitric oxide when exposed to the 19 kDa lipoprotein of Mtb or the whole bacteria. However, VPA was unable to revert the inhibition of CIITA expression induced by the 19 kDa lipoprotein of Mtb. Finally, macrophages infected with Mtb and treated with VPA and IFN-γ showed a significant reduction in intracellular bacteria. Our findings suggest a new therapeutic potential of VPA for the treatment of tuberculosis.


Assuntos
Interferon gama/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Óxido Nítrico/biossíntese , Ácido Valproico/farmacologia , Animais , Antituberculosos/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética
6.
ChemMedChem ; 13(12): 1193-1209, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29771004

RESUMO

Cancer continues to be a worldwide health problem. Certain macrocyclic molecules have become attractive therapeutic alternatives for this disease because of their efficacy and, frequently, their novel mechanisms of action. Herein, we report the synthesis of a series of 20-, 21-, and 22-membered macrocycles containing triazole and bis(aryl ether) moieties. The compounds were prepared by a multicomponent approach from readily available commercial substrates. Notably, some of the compounds displayed interesting cytotoxicity against cancer (PC-3) and breast (MCF-7) cell lines, especially those bearing an aliphatic or a trifluoromethyl substituent on the N-phenyl moiety (IC50 <13 µm). Additionally, some of the compounds were able to induce apoptosis relative to the solvent control; in particular, (Z)-N-cyclohexyl-7-oxo-6-[4-(trifluoromethyl)phenyl]-11 H-3,10-dioxa-6-aza-1(4,1)-triazola-4(1,3),9(1,4)-dibenzenacyclotridecaphane-5-carboxamide (12 f) was the most potent in this regard (22.7 % of apoptosis).


Assuntos
Antineoplásicos/farmacologia , Éteres/farmacologia , Compostos Macrocíclicos/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Éteres/síntese química , Éteres/química , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
7.
Eur J Med Chem ; 138: 1-12, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28641156

RESUMO

A series of C(6)-substituted dihydrobenzo[c]phenanthridines were synthesized by mild copper-catalyzed C(sp3)-H functionalization of dihydrosanguinarine (2) and dihydrochelerythrine (3) with certain nucleophiles selected to enhance cytotoxicity against human breast, colorectal, and prostate cancer cell lines. We also investigated the cytotoxicity of our previously reported C(6)-functionalized N-methyl-5,6-dihydrobenzo[c]phenanthridines 1a-1e to perform structure-activity relationship (SAR) studies. Among the target compounds, five ß-aminomalonates (1a, 1b, 2a, 2b, and 3b), one α-aminophosphonate (2c), and one nitroalkyl derivative (2h) exhibited half maximal inhibitory concentration (IC50) values in the range of 0.6-8.2 µM. Derivatives 1b, 2b and 2h showed the lowest IC50 values, with 2b being the most potent with values comparable to those of the positive control doxorubicin. On the basis of their IC50 values, derivatives 1a, 1b, 2a, 2b, 2h, and 3b were selected to evaluate the apoptotic PC-3 cell death at 10 µM by flow cytometry using propidium iodide and fluorescein isothiocyanate-conjugated Annexin V dual staining. The results indicated that the cytotoxic activity of the tested compounds in PC-3 cells is due to the induction of apoptosis, with 1a and 2h being the most active (55% of early apoptosis induction). Our preliminary SAR study showed that the incorporation of specific malonic esters, dialkyl phosphites and nitro alkanes on scaffolds 1-3 significantly enhanced their cytotoxic properties. Moreover, it appears that the electron donating 7,8-methylenedioxy group allowed derivatives of 2 to exhibit higher cytotoxicity than derivatives of 1 and 3. The present results suggest that derivatives 2b and 2h may be considered as potential lead compounds for the development of new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Benzofenantridinas/farmacologia , Isoquinolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzofenantridinas/síntese química , Benzofenantridinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
8.
Curr Respir Med Rev ; 10(2): 115-123, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25484639

RESUMO

Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases.

9.
J Leukoc Biol ; 95(1): 139-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24009177

RESUMO

The UVB (290-320 nm) radiation in sunlight is responsible for inducing skin cancer. Exposure to UV radiation is also immunosuppressive, and the systemic immune suppression induced by UV is a well-recognized risk factor for cancer induction. As UVB radiation is absorbed within the upper layers of the skin, indirect mechanisms must play a role in activating systemic immune suppression. One prominent example is mast cell migration, which from the skin to the draining LN is an essential step in the cascade of events leading to immune suppression. What triggers mast cell migration is not entirely clear. Here, we tested the hypothesis that PAF, a lipid mediator of inflammation produced by the skin in response to UV exposure, is involved. Mast cell-deficient mice (Kit(W-sh/W-sh)) are resistant to the suppressive effect of UV radiation, and reconstituting mast cell-deficient mice with normal bone marrow-derived mast cells restores susceptibility to immunosuppression. However, when mast cells from PAFR-/- mice were used, the reconstituted mice were not susceptible to the suppressive effects of UV. Furthermore, PAFR-/- mice showed impaired UV-induced mast cell migration when compared with WT mice. Finally, injecting PAF into WT mice mimicked the effect of UV irradiation and induced mast cell migration but not in PAFR-/- mice. Our findings indicate that PAFR binding induces mast cells to migrate from the skin to the LNs, where they mediate immune suppression.


Assuntos
Quimiotaxia/genética , Quimiotaxia/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Fator de Ativação de Plaquetas/genética , Animais , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/efeitos da radiação , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Terapia de Imunossupressão , Mastócitos/efeitos dos fármacos , Mastócitos/efeitos da radiação , Camundongos , Camundongos Knockout , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Raios Ultravioleta
10.
J Immunol ; 186(1): 25-31, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21098222

RESUMO

The most prevalent cancer diagnosed in the world is sunlight-induced skin cancer. In addition to being a complete carcinogen, UV radiation, the causative agent of skin cancer, induces immune suppression. Because UV-induced immune suppression is a well-recognized risk factor for skin cancer induction, it is crucial to understand the mechanisms underlying UV-induced immune suppression. Mast cells, which have recently emerged as immune regulatory cells, are particularly important in UV-induced immune suppression. UV exposure does not induce immune suppression in mast cell-deficient mice. We report that UV irradiation blocks germinal center (GC) formation, Ab secretion, and T follicular helper (Tfh) cell function, in part by altering the expression of transcription factors BCL-6 and BLIMP-1. No suppression of GC formation, Tfh cell IL-21 expression, or Ab secretion was observed in UV-irradiated mast cell-deficient (Kit(W-sh/W-sh)) mice. When mast cell-deficient mice were reconstituted with wild type mast cells, immune suppression was restored. Reconstituting the mast cell-deficient mice with bone marrow-derived mast cells from IL-10-deficient mice failed to restore the ability of UV radiation to suppress GC formation. Our findings demonstrate a function for mast cells, suppression of Tfh cell production, GC formation, and Ab production in vivo.


Assuntos
Diferenciação Celular/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Inibidores do Crescimento/fisiologia , Interleucina-10/fisiologia , Ativação Linfocitária/imunologia , Mastócitos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Formação de Anticorpos/efeitos da radiação , Transplante de Medula Óssea/imunologia , Diferenciação Celular/efeitos da radiação , Centro Germinativo/efeitos da radiação , Interleucina-10/deficiência , Interleucina-10/genética , Interleucinas/antagonistas & inibidores , Interleucinas/biossíntese , Interleucinas/efeitos da radiação , Ativação Linfocitária/genética , Mastócitos/metabolismo , Mastócitos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/biossíntese , Proteínas Proto-Oncogênicas c-bcl-6/efeitos da radiação , Proteínas Proto-Oncogênicas c-kit/genética , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA