Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutr Res Pract ; 14(4): 334-351, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32765814

RESUMO

BACKGROUND/OBJECTIVES: This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS: Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS: Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-ß1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS: These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.

2.
Toxins (Basel) ; 8(11)2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27801779

RESUMO

Adlay seed samples were collected from three adlay growing regions (Yeoncheon, Hwasun, and Eumseong region) in Korea during 2012. Among all the samples collected, 400 seeds were tested for fungal occurrence by standard blotter and test tube agar methods and different taxonomic groups of fungal genera were detected. The most predominant fungal genera encountered were Fusarium, Phoma, Alternaria, Cladosporium, Curvularia, Cochliobolus and Leptosphaerulina. Fusarium species accounted for 45.6% of all species found; and, with phylogenetic analysis based on the combined sequences of two protein coding genes (EF-1α and ß-tubulin), 10 Fusarium species were characterized namely, F. incarnatum (11.67%), F. kyushuense (10.33%), F. fujikuroi (8.67%), F. concentricum (6.00%), F. asiaticum (5.67%), F. graminearum (1.67%), F. miscanthi (0.67%), F. polyphialidicum (0.33%), F. armeniacum (0.33%), and F. thapsinum (0.33%). The Fusarium species were then examined for their morphological characteristics to confirm their identity. Morphological observations of the species correlated well with and confirmed their molecular identification. The ability of these isolates to produce the mycotoxins fumonisin (FUM) and zearalenone (ZEN) was tested by the ELISA quantitative analysis method. The result revealed that FUM was produced only by F. fujikuroi and that ZEN was produced by F. asiaticum and F. graminearum.


Assuntos
Coix/microbiologia , Fumonisinas/metabolismo , Fusarium/metabolismo , Sementes/microbiologia , Zearalenona/biossíntese , Sequência de Bases , DNA Fúngico/análise , Fusarium/genética , Fusarium/isolamento & purificação , Filogenia
3.
Int J Mol Med ; 38(6): 1864-1870, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27779653

RESUMO

Salidroside [2-(4-hydroxyphenyl)ethyl ß-D-gluco-pyranoside (SAS)] has been identified as the most potent ingredient of the plant Rhodiola rosea L. Previous studies have demonstrated that it possesses a number of pharmacological properties, including anti-aging, anti-fatigue, antioxidant, anticancer and anti-inflammatory properties. In this study, to ascertain the molecular mechanisms responsible for the anti-inflammatory activity of SAS, we used phorbol-12-myristate-13-acetate (PMA) plus A23187 to induce inflammation in human mast cell line-1 (HMC-1). The HMC-1 cells were treated with SAS prior to being stimulated with PMA plus A23187. Pro-inflammatory cytokine production was measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). Western blot analysis was used to examine the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). SAS inhibited the mRNA expression and production of interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF). In cells stimulated with PMA plus A23187, SAS suppressed the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-jun N-terminal kinase 1/2 (JNK1/2), but not that of p38 MAPK. SAS suppressed the expression of NF-κB in the nucleus. On the whole, our results suggest that SAS exerts an anti-inflammatory effect by inhibiting the production of pro-inflammatory cytokines through the blocking of the NF-κB and MAPK signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Calcimicina/farmacologia , Glucosídeos/farmacologia , Fenóis/farmacologia , Ésteres de Forbol/farmacologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
PLoS One ; 11(2): e0147745, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881746

RESUMO

Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC) is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD)-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment), MCD diet (MCD diet only), MCD + silymarin (SIL) 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent against NAFLD.


Assuntos
Deficiência de Colina/prevenção & controle , Curcumina/análogos & derivados , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Substâncias Protetoras/farmacologia , Silimarina/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Colina/metabolismo , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Curcuma/química , Curcumina/isolamento & purificação , Curcumina/farmacologia , Diarileptanoides , Sinergismo Farmacológico , Alimentos Formulados/efeitos adversos , Lipogênese/efeitos dos fármacos , Fígado , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão/efeitos dos fármacos , Substâncias Protetoras/isolamento & purificação , Triglicerídeos/sangue
5.
Artigo em Inglês | MEDLINE | ID: mdl-26265924

RESUMO

Shikonin (SKN), a highly liposoluble naphthoquinone pigment isolated from the roots of Lithospermum erythrorhizon, is known to exert antibacterial, wound-healing, anti-inflammatory, antithrombotic, and antitumor effects. The aim of this study was to examine SKN antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The SKN was analyzed in combination with membrane-permeabilizing agents Tris and Triton X-100, ATPase inhibitors sodium azide and N,N'-dicyclohexylcarbodiimide, and S. aureus-derived peptidoglycan; the effects on MRSA viability were evaluated by the broth microdilution method, time-kill test, and transmission electron microscopy. Addition of membrane-permeabilizing agents or ATPase inhibitors together with a low dose of SKN potentiated SKN anti-MRSA activity, as evidenced by the reduction of MRSA cell density by 75% compared to that observed when SKN was used alone; in contrast, addition of peptidoglycan blocked the antibacterial activity of SKN. The results indicate that the anti-MRSA effect of SKN is associated with its affinity to peptidoglycan, the permeability of the cytoplasmic membrane, and the activity of ATP-binding cassette (ABC) transporters. This study revealed the potential of SKN as an effective natural antibiotic and of its possible use to substantially reduce the use of existing antibiotic may also be important for understanding the mechanism underlying the antibacterial activity of natural compounds.

6.
Phytomedicine ; 19(3-4): 284-92, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21982435

RESUMO

Ginsenoside Rd is a protopanaxadiol-type ginsenoside found in ginseng and is the active ingredient in several Oriental herbal medicines. We investigated the effects of ginsenoside Rd on tumor invasion and metastasis in the human hepatocellular carcinoma HepG2 and its possible mechanism of action. HepG2 cells were treated with ginsenoside Rd at different concentrations. Scratch wound and Boyden chamber assays were used to determine the effects of ginsenoside Rd on the migration and invasiveness of HepG2 cells, respectively. The molecular mechanisms by which ginsenoside Rd inhibited the invasion and migration of HepG2 cells were investigated by RT-PCR, Western blotting, gelatin zymography, promoter assay, and treatment with inhibitors of MAPK signaling. Immunofluorescence analysis was conducted to evaluate the effect of ginsenoside Rd on focal adhesion formation in HepG2 cells. Treatment with ginsenoside Rd dose- and time-dependently inhibited the migration and invasion of HepG2 cells. It achieved this by reducing the expression of MMP-1, MMP-2, and MMP-7, by blocking MAPK signaling by inhibiting the phosphorylation of ERK and p38 MAPK, by inhibition of AP-1 activation, and by inducing focal adhesion formation and modulating vinculin localization and expression. Treatment of HepG2 cells with ginsenoside Rd significantly inhibited metastasis, most likely by blocking MMP activation and MAPK signaling pathways involved in cancer cell migration. These findings may be useful for the development of novel chemotherapeutic agents for the treatment of malignant cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Adesões Focais/efeitos dos fármacos , Ginsenosídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Western Blotting , Movimento Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Imunofluorescência , Adesões Focais/metabolismo , Células Hep G2 , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Invasividade Neoplásica/prevenção & controle , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Vinculina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Fitoterapia ; 82(6): 911-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21605636

RESUMO

Ginsenoside Rh1 has been reported to possess antiallergic and anti-inflammatory activities, but its effects on monocytes remain to be determined. Herein, we investigated the effects of Rh1 on the expression of MCP-1 and CCR2, activation of MAPK signaling, and chemotaxis of monocytes. Treatment of Rh1 decreased the levels of MCP-1 and CCR2 and the expression of VLA5 and activated ß1 integrin on the cell surface, and attenuated the phosphorylation of MAPKs. Based on these results, the inhibitory effects of Rh1 on monocyte function should be regarded as a promising new anti-inflammatory response with a potential therapeutic role against inflammation-dependent diseases.


Assuntos
Movimento Celular/efeitos dos fármacos , Ginsenosídeos/farmacologia , Leucemia Monocítica Aguda/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Relação Dose-Resposta a Droga , Ginsenosídeos/química , Integrina alfa5beta1/efeitos dos fármacos , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrina beta1/efeitos dos fármacos , Integrina beta1/genética , Integrina beta1/metabolismo , Leucemia Monocítica Aguda/genética , Receptores CCR2/efeitos dos fármacos , Receptores CCR2/genética , Receptores CCR2/metabolismo
8.
Int J Mol Sci ; 12(12): 9031-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22272118

RESUMO

The aim of this work was to investigate the immunomodulatory activities of Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal imaging confirmed this, since the nanoparticles were internalized within 30 min and heterogeneously distributed throughout the cell. Zeta-potential measurements showed that from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 60%, which is higher than for other components encapsulated in gelatin nanoparticles. Measurements of immune modulation in immune cells showed a significant effect by the crude extract, which was only topped by the nanoparticles containing the extract. Proliferation of B-, T- and NK cells was notably enhanced by Rubus coreanus-gelatin nanoparticles and in general ~2-3 times higher than control and on average ~2 times higher than ferulic acid. R. coreanus-gelatin nanoparticles induced cytokine secretion (IL-6 and TNF-α) from B- and T-cells on average at a ~2-3 times higher rate compared with the extract and ferulic acid. In vivo immunomodulatory activity in mice fed with R. coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody production compared to control, a ~1.3 times higher production compared to the extract only, and a ~1.6 times higher production compared to ferulic acid. Overall, our results suggest that gelatin nanoparticles represent an excellent transport vehicle for Rubus coreanus extract and extracts from other plants generally used in traditional Asian medicine. Such nanoparticles ensure a high local concentration that results in enhancement of immune cell activities, including proliferation, cytokine secretion, and antibody production.


Assuntos
Fatores Imunológicos/farmacologia , Linfócitos/efeitos dos fármacos , Nanopartículas , Extratos Vegetais/farmacologia , Rubus/química , Animais , Proliferação de Células/efeitos dos fármacos , Gelatina/química , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA