RESUMO
Urban air pollution, a significant environmental hazard, is linked to adverse health outcomes and increased mortality across various diseases. This study investigates the neurotoxic effects of particulate matter (PM), specifically PM2.5 and PM10, by examining their role in inducing oxidative stress and subsequent neuronal cell death. We highlight the novel finding that PM increases mitochondrial ROS production via stimulating NOX4 activity, not through its expression level in Neuro-2A cells. Additionally, PMs provoke ROS production via increasing the expression and activity of NOX2 in SH-SY5Y human neuroblastoma cells, implying differential regulation of NOX proteins. This increase in mitochondrial ROS triggers the opening of the mitochondrial permeability transition pore (mPTP), leading to apoptosis through key mediators, including caspase3, BAX, and Bcl2. Notably, the voltage-dependent anion-selective channel 1 (VDAC1) increases at 1 µg/mL of PM2.5, while PM10 triggers an increase from 10 µg/mL. At the same concentration (100 µg/mL), PM2.5 causes 1.4 times higher ROS production and 2.4 times higher NOX4 activity than PM10. The cytotoxic effects induced by PMs were alleviated by NOX inhibitors GKT137831 and Apocynin. In SH-SY5Y cells, both PM types increase ROS and NOX2 levels, leading to cell death, which Apocynin rescues. Variability in NADPH oxidase sources underscores the complexity of PM-induced neurotoxicity. Our findings highlight NOX4-driven ROS and mitochondrial dysfunction, suggesting a potential therapeutic approach for mitigating PM-induced neurotoxicity.
Assuntos
Apoptose , Mitocôndrias , NADPH Oxidase 4 , Neurônios , Material Particulado , Espécies Reativas de Oxigênio , Material Particulado/toxicidade , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Animais , Camundongos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genéticaRESUMO
The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFß) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFßR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFßR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.
Assuntos
Progressão da Doença , Glioblastoma , Integrina alfaV , Transdução de Sinais , Fator de Crescimento Transformador beta , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Fator de Crescimento Transformador beta/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Integrina alfaV/metabolismo , Integrina alfaV/genética , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Movimento Celular/efeitos dos fármacos , Camundongos Nus , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
Neoantigens are tumor-derived peptides and are biomarkers that can predict prognosis related to immune checkpoint inhibition by estimating their binding to major histocompatibility complex (MHC) proteins. Although deep neural networks have been primarily used for these prediction models, it is difficult to interpret the models reported thus far as accurately representing the interactions between biomolecules. In this study, we propose the GraphMHC model, which utilizes a graph neural network model applied to molecular structure to simulate the binding between MHC proteins and peptide sequences. Amino acid sequences sourced from the immune epitope database (IEDB) undergo conversion into molecular structures. Subsequently, atomic intrinsic informations and inter-atomic connections are extracted and structured as a graph representation. Stacked graph attention and convolution layers comprise the GraphMHC network which classifies bindings. The prediction results from the test set using the GraphMHC model showed a high performance with an area under the receiver operating characteristic curve of 92.2% (91.9-92.5%), surpassing a baseline model. Moreover, by applying the GraphMHC model to melanoma patient data from The Cancer Genome Atlas project, we found a borderline difference (0.061) in overall survival and a significant difference in stromal score between the high and low neoantigen load groups. This distinction was not present in the baseline model. This study presents the first feature-intrinsic method based on biochemical molecular structure for modeling the binding between MHC protein sequences and neoantigen candidate peptide sequences. This model can provide highly accurate responsibility information that can predict the prognosis of immune checkpoint inhibitors to cancer patients who want to apply it.
Assuntos
Melanoma , Redes Neurais de Computação , Humanos , Estrutura Molecular , Antígenos de Neoplasias/metabolismo , Peptídeos/química , Melanoma/genéticaRESUMO
The anti-aging gene, klotho, has been identified as a multi-functional humoral factor and is implicated in multiple biological processes. However, the effects of klotho on podocyte injury in diabetic nephropathy are poorly understood. Thus, the current study aims to investigate the renoprotective effects of klotho against podocyte injury in diabetic nephropathy. We examined lipid accumulation and klotho expression in the kidneys of diabetic patients and animals. We stimulated cultured mouse podocytes with palmitate to induce lipotoxicity-mediated podocyte injury with or without recombinant klotho. Klotho level was decreased in podocytes of lipid-accumulated obese diabetic kidneys and palmitate-treated mouse podocytes. Palmitate-treated podocytes showed increased apoptosis, intracellular ROS, ER stress, inflammation, and fibrosis, and these were significantly attenuated by klotho administration. Klotho treatment restored palmitate-induced downregulation of the antioxidant molecules, Nrf2, Keap1, and SOD1. Klotho inhibited the phosphorylation of FOXO3a, promoted its nuclear translocation, and then upregulated MnSOD expression. In addition, klotho administration attenuated palmitate-induced cytoskeleton changes, decreased nephrin expression, and increased TRPC6 expression, eventually improving podocyte albumin permeability. These results suggest that klotho administration prevents palmitate-induced functional and morphological podocyte injuries, and this may indicate that klotho is a potential therapeutic agent for the treatment of podocyte injury in obese diabetic nephropathy.
Assuntos
Apoptose/efeitos dos fármacos , Nefropatias Diabéticas/patologia , Glucuronidase/farmacologia , Palmitatos/farmacologia , Animais , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas Klotho , Camundongos , Camundongos Obesos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Podócitos/citologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
αKlotho is a type 1 transmembrane anti-aging protein. αKlotho-deficient mice have premature aging phenotypes and an imbalance of ion homeostasis including Ca2+ and phosphate. Soluble αKlotho is known to regulate multiple ion channels and growth factor-mediated phosphoinositide-3-kinase (PI3K) signaling. Store-operated Ca2+ entry (SOCE) mediated by pore-forming subunit Orai1 and ER Ca2+ sensor STIM1 is a ubiquitous Ca2+ influx mechanism and has been implicated in multiple diseases. However, it is currently unknown whether soluble αKlotho regulates Orai1-mediated SOCE via PI3K-dependent signaling. Among the Klotho family, αKlotho downregulates SOCE while ßKlotho or γKlotho does not affect SOCE. Soluble αKlotho suppresses serum-stimulated SOCE and Ca2+ release-activated Ca2+ (CRAC) channel currents. Serum increases the cell-surface abundance of Orai1 via stimulating vesicular exocytosis of the channel. The serum-stimulated SOCE and cell-surface abundance of Orai1 are inhibited by the preincubation of αKlotho protein or PI3K inhibitors. Moreover, the inhibition of SOCE and cell-surface abundance of Orai1 by pretreatment of brefeldin A or tetanus toxin or PI3K inhibitors prevents further inhibition by αKlotho. Functionally, we further show that soluble αKlotho ameliorates serum-stimulated SOCE and cell migration in breast and lung cancer cells. These results demonstrate that soluble αKlotho downregulates SOCE by inhibiting PI3K-driven vesicular exocytosis of the Orai1 channel and contributes to the suppression of SOCE-mediated tumor cell migration.
Assuntos
Sinalização do Cálcio , Proteínas Klotho/metabolismo , Proteína ORAI1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Células HEK293 , Humanos , Proteínas Klotho/genética , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismoRESUMO
We propose a novel method, the epinephrine compression method (Epi-pledget), as a hemostasis method for ovarian cystectomy. A total of 179 patients undergoing laparoscopic ovarian cystectomy with stripping were randomly allocated into three groups: the bipolar coagulation group, the Epi-pledget group, and the coagulation after Epi-pledget (Epi & Coagulation) group. Serum anti-Müllerian hormone (AMH) levels and antral follicle count (AFC) by ultrasonography were measured to determine the preservation of ovarian function. To evaluate the postoperative ovarian cellular proliferative activity and tissue damage in a mouse model, we operated on the ovaries of mice with an artificial incision injury and applied two hemostatic methods: coagulation and Epi-pledget. Eight weeks after surgery, the AMH rate significantly decreased in the bipolar coagulation group compared with the Epi-pledget group. The AFC decline rate was also significantly greater in the coagulation group than the Epi-pledget group. Specifically, patients with endometrioma had a significantly greater decline of serum AMH in the coagulation group than the Epi-pledget group. In a histopathological analysis in mice, the Epi-pledget group showed ameliorated fibrotic changes and necrotic findings in the injured lesion compared with the bipolar coagulation group. The Epi-pledget method for ovarian stripping has an additional benefit of maximizing the preservation of the ovarian reserve, especially for the endometriotic ovarian cyst type.
Assuntos
Epinefrina/farmacologia , Reserva Ovariana/efeitos dos fármacos , Ovário/cirurgia , Adulto , Hormônio Antimülleriano/sangue , Coagulação Sanguínea , Perda Sanguínea Cirúrgica/prevenção & controle , Feminino , Hemostasia , Humanos , Laparoscopia/efeitos adversos , Ovário/fisiopatologia , Adulto JovemRESUMO
Hyperphosphatemia is the primary risk factor for vascular calcification, which is closely associated with cardiovascular morbidity and mortality. Recent evidence showed that oxidative stress by high inorganic phosphate (Pi) mediates calcific changes in vascular smooth muscle cells (VSMCs). However, intracellular signaling responsible for Pi-induced oxidative stress remains unclear. Here, we investigated molecular mechanisms of Pi-induced oxidative stress related with intracellular Ca2+ ([Ca2+]i) disturbance, which is critical for calcification of VSMCs. VSMCs isolated from rat thoracic aorta or A7r5 cells were incubated with high Pi-containing medium. Extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin were activated by high Pi that was required for vascular calcification. High Pi upregulated expressions of type III sodium-phosphate cotransporters PiT-1 and -2 and stimulated their trafficking to the plasma membrane. Interestingly, high Pi increased [Ca2+]i exclusively dependent on extracellular Na+ and Ca2+ as well as PiT-1/2 abundance. Furthermore, high-Pi induced plasma membrane depolarization mediated by PiT-1/2. Pretreatment with verapamil, as a voltage-gated Ca2+ channel (VGCC) blocker, inhibited Pi-induced [Ca2+]i elevation, oxidative stress, ERK activation, and osteogenic differentiation. These protective effects were reiterated by extracellular Ca2+-free condition, intracellular Ca2+ chelation, or suppression of oxidative stress. Mitochondrial superoxide scavenger also effectively abrogated ERK activation and osteogenic differentiation of VSMCs by high Pi. Taking all these together, we suggest that high Pi activates depolarization-triggered Ca2+ influx via VGCC, and subsequent [Ca2+]i increase elicits oxidative stress and osteogenic differentiation. PiT-1/2 mediates Pi-induced [Ca2+]i overload and oxidative stress but in turn, PiT-1/2 is upregulated by consequences of these alterations.NEW & NOTEWORTHY The novel findings of this study are type III sodium-phosphate cotransporters PiT-1 and -2-dependent depolarization by high Pi, leading to Ca2+ entry via voltage-gated Ca2+ channels in vascular smooth muscle cells. Cytosolic Ca2+ increase and subsequent oxidative stress are indispensable for osteogenic differentiation and calcification. In addition, plasmalemmal abundance of PiT-1/2 relies on Ca2+ overload and oxidative stress, establishing a positive feedback loop. Identification of mechanistic components of a vicious cycle could provide novel therapeutic strategies against vascular calcification in hyperphosphatemic patients.
Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Hiperfosfatemia/induzido quimicamente , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatos/toxicidade , Calcificação Vascular/induzido quimicamente , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Hiperfosfatemia/metabolismo , Hiperfosfatemia/patologia , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos Sprague-Dawley , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologiaRESUMO
MYH9, a widely expressed gene encoding nonmuscle myosin heavy chain, is also expressed in podocytes and is associated with glomerular pathophysiology. However, the mechanisms underlying MYH9-related glomerular diseases associated with proteinuria are poorly understood. Therefore, we investigated the role and mechanism of MYH9 in diabetic kidney injury. MYH9 expression was decreased in glomeruli from diabetic patients and animals and in podocytes treated with Ang II in vitro. Ang II treatment and siRNA-mediated MYH9 knockdown in podocytes resulted in actin cytoskeleton reorganization, reduced cell adhesion, actin-associated protein downregulation, and increased albumin permeability. Ang II treatment increased NOX4 expression and ROS generation. The Ang II receptor blocker losartan and the ROS scavenger NAC restored MYH9 expression in Ang II-treated podocytes, attenuated disrupted actin cytoskeleton and decreased albumin permeability. Furthermore, MYH9 overexpression in podocytes restored the effects of Ang II on the actin cytoskeleton and actin-associated proteins. Ang II-mediated TRPC6 activation reduced MYH9 expression. These results suggest that Ang II-mediated MYH9 depletion in diabetic nephropathy may increase filtration barrier permeability by inducing structural and functional podocyte injury through TRPC6-mediated Ca2+ influx by NOX4-mediated ROS generation. These findings reveal a novel MYH9 function in maintaining urinary filtration barrier integrity. MYH9 may be a potential target for treating diabetic nephropathy.
Assuntos
Angiotensina II/fisiologia , Nefropatias Diabéticas/patologia , Proteínas Motores Moleculares/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Podócitos/metabolismo , Acetilcisteína/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Adesão Celular , Linhagem Celular Transformada , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Regulação para Baixo , Humanos , Losartan/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Proteínas Motores Moleculares/biossíntese , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , NADPH Oxidase 4/biossíntese , NADPH Oxidase 4/genética , Podócitos/efeitos dos fármacos , Podócitos/ultraestrutura , Interferência de RNA , Ratos , Ratos Endogâmicos , Espécies Reativas de Oxigênio/metabolismo , Receptores para Leptina/deficiência , Canal de Cátion TRPC6/fisiologiaRESUMO
Deregulation of Ca2+ signaling has been regarded as one of the key features of cancer progression. Lysine-deficient protein kinase 1 (WNK1), a major regulator of renal ion transport, regulates Ca2+ signaling through stimulating the phosphatidylinositol 4-kinase IIIα (PI4KIIIα) to activate Gαq-coupled receptor/PLC-ß signaling. However, the contribution of WNK1-mediated Ca2+ signaling in the development of clear-cell renal-cell carcinoma (ccRCC) is yet unknown. We found that the canonical transient receptor potential channel (TRPC)6 was widely expressed in ccRCC tissues and functioned as a primary Ca2+ influx mechanism. We further identified that the expressions of WNK1, PI4KIIIα, TRPC6, and the nuclear factor of activated T cells cytoplasmic 1 (NFATc1) were elevated in the tumor tissues compared with the adjacent normal tissues. WNK1 expression was directly associated with the nuclear grade of ccRCC tissues. Functional experiments showed that WNK1 activated TRPC6-mediated Ca2+ influx and current by stimulating PI4KIIIα. Notably, the inhibition of WNK1-mediated TRPC6 activation and its downstream substrate calcineurin attenuated NFATc1 activation and the subsequent migration and proliferation of ccRCC. These findings revealed a novel perspective of WNK1 signaling in targeting the TRPC6-NFATc1 pathway as a therapeutic potential for renal-cell carcinoma.-Kim, J.-H., Hwang, K.-H., Eom, M., Kim, M., Park, E. Y., Jeong, Y., Park, K.-S., Cha, S.-K. WNK1 promotes renal tumor progression by activating TRPC6-NFAT pathway.
Assuntos
Rim/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Canal de Cátion TRPC6/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Células HEK293 , Humanos , Rim/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfócitos T/metabolismo , Linfócitos T/patologiaRESUMO
BACKGROUND: c-Src is a driver oncogene well-known for tumorigenic signaling, but little for metabolic function. Previous reports about c-Src regulation of glucose metabolism prompted us to investigate its function in other nutrient modulation, particularly in lipid metabolism. METHODS: Oil-red O staining, cell growth assay, and tumor volume measurement were performed to determine lipid amount and growth inhibitory effect of treatments in lung cancer cells and xenograft model. Gene expression was evaluated by immunoblotting and relative RT-PCR. Transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) was assessed by luciferase assay. Reactive oxygen species (ROS) was measured using ROS sensing dye. Oxygen consumption rate was evaluated by Seahorse XF Mito Stress Test. Clinical relevance of candidate proteins was examined using patient samples and public database analysis. FINDINGS: Inhibition of Src induced lipolysis and increased intracellular ROS. Src inhibition derepressed PPARγ transcriptional activity leading to induced expression of lipolytic gene fatty acid binding protein (FABP) 4 which accompanies reduced lipid droplets and decreased tumor growth. The reverse correlation of Src and FABP4 was confirmed in pair-matched lung cancer patient samples, and further analysis using public datasets revealed upregulation of lipolytic genes is associated with better prognosis of cancer patients. INTERPRETATION: This study provides an insight of how oncogenic factor Src concurrently regulates both cellular signaling pathways and metabolic plasticity to drive cancer progression. FUND: National Research Foundation of Korea and Korea Health Industry Development Institute.
Assuntos
Lipólise , Neoplasias Pulmonares/metabolismo , Quinases da Família src/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proteínas de Ligação a Ácido Graxo/metabolismo , Células HEK293 , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , PPAR gama/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Quinases da Família src/genética , Quinases da Família src/metabolismoRESUMO
Wound healing is a physiological restorative response to tissue and cell injury. This process occurs in collaboration with a complex cascade of cellular events, including biochemical alterations to the extracellular matrix. Polydeoxyribonucleotide (PDRN) is a fragmented DNA mixture from Oncorhynchus mykiss or Oncorhynchus keta sperm known to promote tissue regeneration under different pathophysiological conditions. However, the most effective molecular size of PDRNs for promoting the wound healing process and quality has not been established. In the present study, the regeneration quality with low (<50 kDa), middle [classic PDRN; 501,500 kDa] and high (>1,500 kDa) molecular weight PDRNs in a skin wound healing mouse model was examined using hematoxylin and eosin, as well as Masson's trichrome stain. A 4 mm biopsy punch was used to produce wounds in the skin of the mice. PDRNmediated cellular behavior and signaling were evaluated by in vitro scratch assay and western blot analysis, respectively. It was observed that the apparent surface wound healing processes were not significantly different between PDRN molecular sizes. Immunohistochemical analysis revealed that classic PDRNinjected mice exhibited less lipid accumulation with increased collagen composition. These results suggested that 501,500 kDa PDRN offers an effective DNA mixture to improve wound healing quality. Furthermore, classic PDRN increased cell migration via cJun Nterminal kinase signaling in human fibroblasts. The present study suggests an optimal PDRN molecular weight to promote wound healing, and novel approaches for therapeutic strategies to improve tissue regeneration quality.
Assuntos
Polidesoxirribonucleotídeos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Biomarcadores , Linhagem Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pele/efeitos dos fármacos , Pele/lesões , Pele/metabolismo , Pele/patologiaRESUMO
Background/Aims: Fibroblast growth factor (FGF) 21 is associated with hepatic inflammation and fibrosis. However, little is known regarding the effects of inflammation and fibrosis on the ß-Klotho and FGF21 pathway in the liver. Methods: Enrolled patients had biopsy-confirmed viral or alcoholic hepatitis. FGF19, FGF21 and ß-Klotho levels were evaluated using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blotting. Furthermore, we explored the underlying mechanisms for this process by evaluating nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathway involvement in Huh-7 cells. Results: We observed that the FGF19 and FGF21 serum and mRNA levels in the biopsied liver tissue gradually increased and were correlated with fibrosis stage. Inflammatory markers (interleukin 1ß [IL-1ß], IL-6, and tumor necrosis factor-α) were positively correlated, while ß-Klotho expression was negatively correlated with the degree of fibrosis. In Huh-7 cells, IL-1ß increased FGF21 levels and decreased ß-Klotho levels. NF-κB and JNK inhibitors abolished the effect of IL-1ß on both FGF21 and ß-Klotho expression. FGF21 protected IL-1ß-induced growth retardation in Huh-7 cells. Conclusions: These results indicate that the inflammatory response during fibrogenesis increases FGF21 levels and suppresses ß-Klotho via the NF-κB and JNK pathway. In addition, FGF21 likely protects hepatocytes from hepatic inflammation and fibrosis.
Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Hepatite Alcoólica/sangue , Hepatite Viral Humana/sangue , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/sangue , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Adolescente , Adulto , Idoso , Feminino , Hepatite Alcoólica/complicações , Hepatite Alcoólica/patologia , Hepatite Viral Humana/complicações , Hepatite Viral Humana/patologia , Hepatócitos/metabolismo , Humanos , Proteínas Klotho , Fígado/citologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
The beneficial effects of simvastatin on fibrosis in various organs have been reported. In addition, bone marrow (BM)-derived mesenchymal stem cells (MSCs) have been suggested as an effective therapy for hepatic fibrosis and cirrhosis. Recent evidence suggests that pharmacological treatment devoted to regulating stem cell function is a potential new therapeutic strategy that is drawing nearer to clinical practice. The aim of this study was to determine whether the combination treatment of simvastatin plus MSCs (Sim-MSCs) could have a synergistic effect on hepatic fibrosis in a thioacetamide (TAA)-induced cirrhotic rat model and hepatic stellate cells (HSCs). Cirrhotic livers from rats treated with Sim-MSCs exhibited histological improvement compared to those treated with simvastatin alone. Sim-MSCs combination treatment decreased hepatic collagen distribution, lowered the hydroxyproline content, and rescued liver function impairment in rats with TAA-induced cirrhosis. These protective effects were more potent with Sim-MSCs than with simvastatin alone. The upregulation of collagen-1, α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-ß1, and phospho-Smad3 in cirrhotic livers was prevented by the administration of Sim-MSCs. Intriguingly, Sim-MSCs inhibited both TGF-ß/Smad3 signaling and α-SMA in HSCs. The Sim-MSCs combination treatment exerted strong protective effects against hepatic fibrosis by suppressing TGF-ß/Smad signaling. Simvastatin could act synergistically with MSCs as an efficient therapeutic approach for intractable cirrhosis.
Assuntos
Transplante de Medula Óssea/métodos , Cirrose Hepática/fisiopatologia , Cirrose Hepática/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Sinvastatina/administração & dosagem , Animais , Células Cultivadas , Terapia Combinada/métodos , Sinergismo Farmacológico , Cirrose Hepática/patologia , Testes de Função Hepática , Masculino , Ratos , Ratos Sprague-Dawley , Resultado do TratamentoRESUMO
Fanconi syndrome is a dysfunction of the proximal renal tubules that results in impaired reabsorption and increased urinary loss of phosphate and other solutes. The pathophysiology of drug-induced Fanconi syndrome is unclear. Here we report the case of a 36-year-old woman who presented with pain in multiple bones and proteinuria. She had a 7-year history of taking adefovir at 10 mg/day for chronic hepatitis B. Three years previously she had received surgery for a nontraumatic right femur neck fracture, after which she continued to complain of pain in multiple bones, and proteinuria, glycosuria, and phosphaturia were noted. The findings of a light-microscope examination of a renal biopsy sample were normal, but mitochondrial damage of the proximal tubules was evident in electron microscopy. Western blot analysis revealed that the level of serum fibroblast growth factor 23 (FGF23) was lower than in normal controls. After 2 months of treatment, hypophosphatemia and proximal tubular dysfunction were reversed, and serum FGF23 had normalized. This case suggests that direct mitochondrial damage in proximal tubules can cause drug-induced Fanconi syndrome associated with osteomalacia.
Assuntos
Adenina/análogos & derivados , Síndrome de Fanconi/diagnóstico , Organofosfonatos/efeitos adversos , Osteomalacia/diagnóstico , Adenina/efeitos adversos , Adenina/uso terapêutico , Adenina/toxicidade , Adulto , Osso e Ossos/efeitos dos fármacos , Síndrome de Fanconi/etiologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Hepatite B/tratamento farmacológico , Humanos , Hipofosfatemia/etiologia , Hipofosfatemia/patologia , Túbulos Renais Proximais/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Organofosfonatos/uso terapêutico , Organofosfonatos/toxicidade , Osteomalacia/etiologiaRESUMO
Elevated plasma levels of inorganic phosphate (Pi) are harmful, causing, among other complications, vascular calcification and defective insulin secretion. The underlying molecular mechanisms of these complications remain poorly understood. We demonstrated the role of Pi transport across the plasmalemma on Pi toxicity in INS-1E rat clonal ß cells and rat pancreatic islet cells. Type III sodium-phosphate cotransporters (NaPis) are the predominant Pi transporters expressed in insulin-secreting cells. Transcript and protein levels of sodium-dependent phosphate transporter 1 and 2 (PiT-1 and -2), isotypes of type III NaPi, were up-regulated by high-Pi incubation. In patch-clamp experiments, extracellular Pi elicited a Na+-dependent, inwardly rectifying current, which was markedly reduced under acidic extracellular conditions. Cellular uptake of Pi elicited cytosolic alkalinization; intriguingly, this pH change facilitated Pi transport into the mitochondrial matrix. Increased mitochondrial Pi uptake accelerated superoxide generation, mitochondrial permeability transition (mPT), and endoplasmic reticulum stress-mediated translational attenuation, leading to reduced insulin content and impaired glucose-stimulated insulin secretion. Silencing of PiT-1/2 prevented Pi-induced superoxide generation and mPT, and restored insulin secretion. We propose that Pi transport across the plasma membrane and consequent cytosolic alkalinization could be a therapeutic target for protection from Pi toxicity in insulin-secreting cells, as well as in other cell types.-Nguyen, T. T., Quan, X., Xu, S., Das, R., Cha, S.-K., Kong, I. D., Shong, M., Wollheim, C. B., Park, K.-S. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion.
Assuntos
Transporte Biológico/efeitos dos fármacos , Transporte de Íons/genética , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatos/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , RatosRESUMO
UNLABELLED: : Bone marrow-derived mesenchymal stem cells (BM-MSCs) are known to have an antifibrotic effect and could be used as vehicles for targeted gene delivery. Decorin plays a protective role against fibrogenesis by modulating the degradation of the extracellular matrix. The aim of this study was to determine whether the antifibrotic effect of a combination treatment consisting of BM-MSCs and decorin on hepatic fibrosis is superior to BM-MSCs alone. The effects of BM-MSCs infected with decorin-expressing adenovirus (DCN-MSCs) on hepatic fibrosis were examined in a rat model of thioacetamide (TAA)-induced cirrhosis. The effects of infection with decorin-expressing adenovirus and of incubation with the conditioned medium of DCN-MSCs on transforming growth factor-ß (TGF-ß) signaling were analyzed in immortalized human hepatic stellate cells (HSCs). According to the Laennec fibrosis scoring system, cirrhotic livers from rats treated with DCN-MSCs exhibited histological improvement compared with cirrhotic livers from rats treated with control adenovirus-infected MSCs (CA-MSCs). DCN-MSC treatment reduced hepatic collagen distribution, lowered the hydroxyproline content, and rescued liver function impairment in rats with TAA-induced cirrhosis. These protective effects were more potent with DCN-MSCs than with CA-MSCs. The upregulation of collagen-1, α-smooth muscle actin (α-SMA), TGF-ß1, and Smad3 phosphorylation in cirrhotic livers was prevented by DCN-MSC administration. Intriguingly, medium from cultured DCN-MSCs blocked both Smad3 phosphorylation and exogenous TGF-ß1 stimulated α-SMA synthesis in HSCs. DCN-MSCs exert strong protective effects against hepatic fibrosis by suppressing TGF-ß/Smad signaling. Thus, treatment with DCN-MSCs is a potentially novel and efficient therapeutic approach for patients with intractable cirrhosis. SIGNIFICANCE: A combination treatment consisting of bone marrow-derived mesenchymal stem cells (BM-MSCs) and decorin strongly inhibited the progression of thioacetamide-induced hepatic fibrosis in rats, compared with BM-MSCs alone. Furthermore, the significant inhibitory effect of BM-MSCs infected with decorin-expressing adenovirus was attributed to suppressing transforming growth factor-ß (TGF-ß)/Smad signaling pathway, supported by attenuation of TGF-ß1 expression and inhibition of Smad3 phosphorylation. Therefore, treatment with BM-MSCs infected with decorin-expressing adenovirus could constitute a novel and efficient therapeutic approach for patients with intractable cirrhosis.
Assuntos
Decorina/metabolismo , Terapia Genética/métodos , Cirrose Hepática , Transplante de Células-Tronco Mesenquimais/métodos , Adenoviridae , Animais , Western Blotting , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/virologia , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Store-operated calcium (Ca(2+)) entry (SOCE) is the principal Ca(2+) entry route in non-excitable cells, including cancer cells. We previously demonstrated that Orai1 and STIM1, the molecular components of SOCE, are involved in tumorigenesis of clear cell renal cell carcinoma (CCRCC). However, a clinical relevance of Orai1 and STIM1 expression in CCRCC has been ill-defined. Here, we investigated the expression of Orai1 and STIM1 in CCRCC, and compared their expression with clinico-pathological parameters of CCRCC and the patients' outcome. Immunohistochemical staining for Orai1 and STIM1 was performed on 126 formalin fixed paraffin embedded tissue of CCRCC and western blot analysis for Orai1 was performed on the available fresh tissue. The results were compared with generally well-established clinicopathologic prognostic factors in CCRCC and patient survival. Membrane protein Orai1 is expressed in the nuclei in CCRCC, whereas STIM1 shows the cytosolic expression pattern in immunohistochemical staining. Orai1 expression level is inversely correlated with CCRCC tumor grade, whereas STIM1 expression level is not associated with tumor grade. The higher Orai1 expression is significantly associated with lower Fuhrman nuclear grade, pathologic T stage, and TNM stage and with favorable prognosis. The expression level of STIM1 is not correlated with CCRCC grade and clinical outcomes. Orai1 expression in CCRCC is associated with tumor progression and with favorable prognostic factors. These results suggest that Orai1 is an attractive prognostic marker and therapeutic target for CCRCC.
Assuntos
Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Proteína ORAI1/metabolismo , Adolescente , Adulto , Idoso , Western Blotting , Carcinoma de Células Renais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Prognóstico , Estudos Retrospectivos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Adulto JovemRESUMO
Klotho functions as a tumor suppressor predominantly expressed in renal tubular cells, the origin of clear cell renal cell carcinoma (ccRCC). Altered expression and/or activity of growth factor receptor have been implicated in ccRCC development. Although Klotho suppresses a tumor progression through growth factor receptor signaling including insulin-like growth factor-1 receptor (IGF-1R), the role of Klotho acting on IGF-1R in ccRCC and its clinical relevance remains obscure. Here, we show that Klotho is favorable prognostic factor for ccRCC and exerts tumor suppressive role for ccRCC through inhibiting IGF-1R signaling. Our data shows the following key findings. First, in tumor tissues, the level of Klotho and IGF-1R expression are low or high, respectively, compared to that of adjacent non-neoplastic parenchyma. Second, the Klotho expression is clearly low in higher grade of ccRCC and is closely associated with clinical outcomes in tumor progression. Third, Klotho suppresses IGF-1-stimulated cell proliferation and migration by inhibiting PI3K/Akt pathway. These results provide compelling evidence supporting that Klotho acting on IGF-1R signaling functions as tumor suppressor in ccRCC and suggest that Klotho is a potential carcinostatis substance for ccRCC.
RESUMO
TGF-ß is a pleiotropic cytokine that accumulates during kidney injuries, resulting in various renal diseases. We have reported previously that TGF-ß1 induces the selective up-regulation of mitochondrial Nox4, playing critical roles in podocyte apoptosis. Here we investigated the regulatory mechanism of Nox4 up-regulation by mTORC1 activation on TGF-ß1-induced apoptosis in immortalized podocytes. TGF-ß1 treatment markedly increased the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream targets p70S6K and 4EBP1. Blocking TGF-ß receptor I with SB431542 completely blunted the phosphorylation of mTOR, p70S6K, and 4EBP1. Transient adenoviral overexpression of mTOR-WT and constitutively active mTORΔ augmented TGF-ß1-treated Nox4 expression, reactive oxygen species (ROS) generation, and apoptosis, whereas mTOR kinase-dead suppressed the above changes. In addition, knockdown of mTOR mimicked the effect of mTOR-KD. Inhibition of mTORC1 by low-dose rapamycin or knockdown of p70S6K protected podocytes through attenuation of Nox4 expression and subsequent oxidative stress-induced apoptosis by TGF-ß1. Pharmacological inhibition of the MEK-ERK cascade, but not the PI3K-Akt-TSC2 pathway, abolished TGF-ß1-induced mTOR activation. Inhibition of either ERK1/2 or mTORC1 did not reduce the TGF-ß1-stimulated increase in Nox4 mRNA level but significantly inhibited total Nox4 expression, ROS generation, and apoptosis induced by TGF-ß1. Moreover, double knockdown of Smad2 and 3 or only Smad4 completely suppressed TGF-ß1-induced ERK1/2-mTORactivation. Our data suggest that TGF-ß1 increases translation of Nox4 through the Smad-ERK1/2-mTORC1 axis, which is independent of transcriptional regulation. Activation of this pathway plays a crucial role in ROS generation and mitochondrial dysfunction, leading to podocyte apoptosis. Therefore, inhibition of the ERK1/2-mTORC1 pathway could be a potential therapeutic and preventive target in proteinuric and chronic kidney diseases.
Assuntos
Apoptose , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Podócitos/citologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos , Sistema de Sinalização das MAP Quinases , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , NADPH Oxidase 4 , NADPH Oxidases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podócitos/enzimologia , Podócitos/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/genética , Regulação para CimaRESUMO
Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.