Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 113: 102656, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37625218

RESUMO

PURPOSE: The end-to-end (E2E) quality assurance (QA) test is a unique tool for validating the treatment chain undergone by patients in external radiotherapy. It should be conducted in three dimensions (3D) to get accurate results. This study aims to implement these tests with Fricke-Xylenol orange-Gelatin (FXG) gel dosimeter and a newly developed dual-wavelength reading method on the Vista16™ optical Computed Tomography (CT) scanner (ModusQA) for three treatment techniques in stereotactic radiotherapy, on Novalis (Varian) and CyberKnife (Accuray) linear accelerators. METHODS: The tests were performed in head phantoms. Gel measurements were compared with planned dose distributions and measured by film and ion chamber measurements by plotting isodose curves and dose profiles, and by conducting a 3D local gamma-index analysis (2%/2mm criteria). RESULTS: Gamma passing rates were higher than 95 %. Point dose differences between treatment planning and gel and ion chamber measurements at the isocenter were < 2.3 % for both treatments delivered on the Novalis accelerator, while this difference was higher than 4 % for the treatment delivered on the CyberKnife, highlighting a small overdosing of the tumor volume. A good agreement was observed between gel and film dose profiles. CONCLUSIONS: This study presents the successful implementation of 3D E2E QA tests for stereotactic radiotherapy with FXG gel dosimetry and a dual-wavelength reading method on an optical CT scanner. This dosimetric method provides 3D absolute dose distributions in the 0.25 - 10 Gy dose range with a high spatial resolution and a dose uncertainty of around 2 % (k=1).


Assuntos
Gelatina , Radiocirurgia , Humanos , Dosímetros de Radiação , Tomografia Computadorizada de Feixe Cônico
2.
Transl Lung Cancer Res ; 10(4): 2011-2017, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012810

RESUMO

Respiratory motion is one of the geometrical uncertainties that may affect the accuracy of thoracic radiotherapy in the treatment of lung cancer. Accounting for tumour motion may allow reducing treatment volumes, irradiated healthy tissue and possibly toxicity, and finally enabling dose escalation. Historically, large population-based margins were used to encompass tumour motion. A paradigmatic change happened in the last decades led to the development of modern imaging techniques during the simulation and the delivery, such as the 4-dimensional (4D) computed tomography (CT) or the 4D-cone beam CT scan, has contributed to a better understanding of lung tumour motion and to the widespread use of individualised margins (with either an internal tumour volume approach or a mid-position/ventilation approach). Moreover, recent technological advances in the delivery of radiotherapy treatments (with a variety of commercial solution allowing tumour tracking, gating or treatments in deep-inspiration breath-hold) conjugate the necessity of minimising treatment volumes while maximizing the patient comfort with less invasive techniques. In this narrative review, we provided an introduction on the intra-fraction tumour motion (in both lung tumours and mediastinal lymph-nodes), and summarized the principal motion management strategies (in both the imaging and the treatment delivery) in thoracic radiotherapy for lung cancer, with an eye on the clinical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA