Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RMD Open ; 10(2)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772678

RESUMO

OBJECTIVE: Patients with X linked agammaglobulinemia are susceptible to enterovirus (EV) infections. Similarly, severe EV infections have been described in patients with impaired B-cell response following treatment with anti-CD20 monoclonal antibodies (mAbs), mostly in those treated for haematological malignancies. We aimed to describe severe EV infections in patients receiving anti-CD20 mAbs for immune-mediated inflammatory diseases (IMIDs). METHODS: Patients were included following a screening of data collected through the routine surveillance of EV infections coordinated by the National Reference Center and a review of the literature. Additionally, neutralising antibodies were assessed in a patient with chronic EV-A71 meningoencephalitis. RESULTS: Nine original and 17 previously published cases were retrieved. Meningoencephalitis (n=21/26, 81%) associated with EV-positive cerebrospinal fluid (n=20/22, 91%) was the most common manifestation. The mortality rate was high (27%). EV was the only causal agents in all reported cases. Patients received multiple anti-CD20 mAbs infusions (median 8 (5-10)), resulting in complete B-cell depletion and moderate hypogammaglobulinemia (median 4.9 g/L (4.3-6.7)), and had limited concomitant immunosuppressive treatments. Finally, in a patient with EV-A71 meningoencephalitis, a lack of B-cell response to EV was shown. CONCLUSION: EV infection should be evoked in patients with IMIDs presenting with atypical organ involvement, especially meningoencephalitis. Anti-CD20 mAbs may lead to impaired B-cell response against EV, although an underlying primary immunodeficiency should systematically be discussed.


Assuntos
Anticorpos Monoclonais , Antígenos CD20 , Infecções por Enterovirus , Humanos , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/diagnóstico , Masculino , Feminino , Anticorpos Monoclonais/uso terapêutico , Antígenos CD20/imunologia , Pessoa de Meia-Idade , Adulto , Meningoencefalite/imunologia , Meningoencefalite/virologia , Meningoencefalite/etiologia , Meningoencefalite/diagnóstico , Meningoencefalite/tratamento farmacológico , Idoso , Rituximab/uso terapêutico , Linfócitos B/imunologia , Agamaglobulinemia/imunologia , Agamaglobulinemia/complicações , Inflamação/imunologia
2.
PLoS Pathog ; 16(11): e1008593, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180834

RESUMO

Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies.


Assuntos
Carcinoma Hepatocelular/virologia , Proteínas de Ciclo Celular/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Neoplasias Hepáticas/virologia , Proteínas Repressoras/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas de Ciclo Celular/genética , Vírus da Hepatite B/genética , Hepatócitos/virologia , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteômica , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Proteínas do Core Viral/genética , Replicação Viral
3.
PLoS One ; 15(5): e0232585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374750

RESUMO

Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.


Assuntos
Culicidae/metabolismo , Encefalite Japonesa/metabolismo , Neurônios/patologia , Proteoma/metabolismo , Febre do Nilo Ocidental/metabolismo , Animais , Linhagem Celular Tumoral , Culicidae/virologia , Vírus da Encefalite Japonesa (Subgrupo)/isolamento & purificação , Encefalite Japonesa/patologia , Encefalite Japonesa/virologia , Feminino , Humanos , Neurônios/metabolismo , Neurônios/virologia , Proteoma/análise , Saliva/metabolismo , Saliva/virologia , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação
4.
Med Sci (Paris) ; 34(8-9): 693-700, 2018.
Artigo em Francês | MEDLINE | ID: mdl-30230454

RESUMO

Chronic infection by hepatitis B virus (HBV) is a major public health problem with more than 250 millions of people chronically infected worldwide who have a high risk to develop cirrhosis and hepatocellular carcinoma. Available treatments reduce viremia but do not eradicate the virus from hepatocytes. Therefore, there is an urgent need to develop new classes of antiviral molecules and the viral capsid protein, Core, constitutes a new favored target. Core protein Allosteric Modulators (CAMs) targeting its assembly functions are in clinical development. In addition, investigation of Core regulatory functions may lead to the development of compounds targeting cellular factors (HTA) that could be used in combined therapies aiming to achieve a better control of HBV replication.


Assuntos
Pesquisa Biomédica/tendências , Descoberta de Drogas , Vírus da Hepatite B/química , Hepatite B/tratamento farmacológico , Proteínas do Core Viral/fisiologia , Antivirais/isolamento & purificação , Antivirais/uso terapêutico , Descoberta de Drogas/normas , Descoberta de Drogas/tendências , Humanos , Terapia de Alvo Molecular/normas , Terapia de Alvo Molecular/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA