Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 221: 273-282, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38740102

RESUMO

Defective mitochondria and autophagy, as well as accumulation of lipid and iron in WDR45 mutant fibroblasts, is related to beta-propeller protein-associated neurodegeneration (BPAN). In this study, we found that enlarged lysosomes in cells derived from patients with BPAN had low enzyme activity, and most of the enlarged lysosomes had an accumulation of iron and oxidized lipid. Cryo-electron tomography revealed elongated lipid accumulation, and spectrometry-based elemental analysis showed that lysosomal iron and oxygen accumulation superimposed with lipid aggregates. Lysosomal lipid aggregates superimposed with autofluorescence as free radical generator, lipofuscin. To eliminate free radical stress by iron accumulation in cells derived from patients with BPAN, we investigated the effects of the iron chelator, 2,2'-bipyridine (bipyridyl, BIP). To study whether the defects in patient-derived cells can be rescued by an iron chelator BIP, we tested whether the level of iron and reactive oxygen species (ROS) in the cells and genes related to oxidative stress were rescued BIP treatment. Although BIP treatment decreased some iron accumulation in the cytoplasm and mitochondria, the accumulation of iron in the lysosomes and levels of cellular ROS were unaffected. In addition, the change of specific RNA levels related to free radical stress in patient fibroblasts was not rescued by BIP. To alleviate free radical stress, we investigated whether l-serine can regulate abnormal structures in cells derived from patients with BPAN through the regulation of free radical stress. l-serine treatment alleviated increase of enlarged lysosomes and iron accumulation and rescued impaired lysosomal activity by reducing oxidized lipid accumulation in the lysosomes of the cells. Lamellated lipids in the lysosomes of the cells were identified as lipofuscin through correlative light and electron microscopy, and l-serine treatment reduced the increase of lipofuscin. These data suggest that l-serine reduces oxidative stress-mediated lysosomal lipid oxidation and iron accumulation by rescuing lysosomal activity.


Assuntos
Fibroblastos , Ferro , Lipofuscina , Lisossomos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Serina , Humanos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Lipofuscina/metabolismo , Ferro/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/tratamento farmacológico , Distrofias Neuroaxonais/genética , 2,2'-Dipiridil/farmacologia , 2,2'-Dipiridil/análogos & derivados , Quelantes de Ferro/farmacologia
2.
Mol Cancer ; 23(1): 45, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424542

RESUMO

BACKGROUND: In the myeloid compartment of the tumor microenvironment, CD244 signaling has been implicated in immunosuppressive phenotype of monocytes. However, the precise molecular mechanism and contribution of CD244 to tumor immunity in monocytes/macrophages remains elusive due to the co-existing lymphoid cells expressing CD244. METHODS: To directly assess the role of CD244 in tumor-associated macrophages, monocyte-lineage-specific CD244-deficient mice were generated using cre-lox recombination and challenged with B16F10 melanoma. The phenotype and function of tumor-infiltrating macrophages along with antigen-specific CD8 T cells were analyzed by flow cytometry and single cell RNA sequencing data analysis, and the molecular mechanism underlying anti-tumorigenic macrophage differentiation, antigen presentation, phagocytosis was investigated ex vivo. Finally, the clinical feasibility of CD244-negative monocytes as a therapeutic modality in melanoma was confirmed by adoptive transfer experiments. RESULTS: CD244fl/flLysMcre mice demonstrated a significant reduction in tumor volume (61% relative to that of the CD244fl/fl control group) 14 days after tumor implantation. Within tumor mass, CD244fl/flLysMcre mice also showed higher percentages of Ly6Clow macrophages, along with elevated gp100+IFN-γ+ CD8 T cells. Flow cytometry and RNA sequencing data demonstrated that ER stress resulted in increased CD244 expression on monocytes. This, in turn, impeded the generation of anti-tumorigenic Ly6Clow macrophages, phagocytosis and MHC-I antigen presentation by suppressing autophagy pathways. Combining anti-PD-L1 antibody with CD244-/- bone marrow-derived macrophages markedly improved tumor rejection compared to the anti-PD-L1 antibody alone or in combination with wild-type macrophages. Consistent with the murine data, transcriptome analysis of human melanoma tissue single-cell RNA-sequencing dataset revealed close association between CD244 and the inhibition of macrophage maturation and function. Furthermore, the presence of CD244-negative monocytes/macrophages significantly increased patient survival in primary and metastatic tumors. CONCLUSION: Our study highlights the novel role of CD244 on monocytes/macrophages in restraining anti-tumorigenic macrophage generation and tumor antigen-specific T cell response in melanoma. Importantly, our findings suggest that CD244-deficient macrophages could potentially be used as a therapeutic agent in combination with immune checkpoint inhibitors. Furthermore, CD244 expression in monocyte-lineage cells serve as a prognostic marker in cancer patients.


Assuntos
Melanoma , Monócitos , Humanos , Animais , Camundongos , Monócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Macrófagos/metabolismo , Linfócitos T CD8-Positivos , Carcinogênese/metabolismo , Microambiente Tumoral , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
3.
Ann Rheum Dis ; 82(8): 1035-1048, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188496

RESUMO

OBJECTIVES: 'Invasive pannus' is a pathological hallmark of rheumatoid arthritis (RA). This study aimed to investigate secretome profile of synovial fibroblasts of patients with RA (RA-FLSs), a major cell type comprising the invasive pannus. METHODS: Secreted proteins from RA-FLSs were first identified using liquid chromatography-tandem mass spectrometry analysis. Ultrasonography was performed for affected joints to define synovitis severity at the time of arthrocentesis. Expression levels of myosin heavy chain 9 (MYH9) in RA-FLSs and synovial tissues were determined by ELISA, western blot analysis and immunostaining. A humanised synovitis model was induced in immuno-deficient mice. RESULTS: We first identified 843 proteins secreted from RA-FLSs; 48.5% of the secretome was associated with pannus-driven pathologies. Parallel reaction monitoring analysis of the secretome facilitated discovery of 16 key proteins related to 'invasive pannus', including MYH9, in the synovial fluids, which represented synovial pathology based on ultrasonography and inflammatory activity in the joints. Particularly, MYH9, a key protein in actin-based cell motility, showed a strong correlation with fibroblastic activity in the transcriptome profile of RA synovia. Moreover, MYH9 expression was elevated in cultured RA-FLSs and RA synovium, and its secretion was induced by interleukin-1ß, tumour necrosis factor α, toll-like receptor ligation and endoplasmic reticulum stimuli. Functional experiments demonstrated that MYH9 promoted migration and invasion of RA-FLSs in vitro and in a humanised synovitis model, which was substantially inhibited by blebbistatin, a specific MYH9 inhibitor. CONCLUSIONS: This study provides a comprehensive resource of the RA-FLS-derived secretome and suggests that MYH9 represents a promising target for retarding abnormal migration and invasion of RA-FLSs.


Assuntos
Artrite Reumatoide , Sinoviócitos , Sinovite , Animais , Camundongos , Sinoviócitos/metabolismo , Secretoma , Membrana Sinovial/metabolismo , Artrite Reumatoide/patologia , Movimento Celular/fisiologia , Sinovite/patologia , Fibroblastos/metabolismo , Células Cultivadas , Proliferação de Células/fisiologia
4.
Exp Mol Med ; 55(5): 999-1012, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121977

RESUMO

Chronic viral infection impairs systemic immunity in the host; however, the mechanism underlying the dysfunction of immune cells in chronic viral infection is incompletely understood. In this study, we studied the lineage differentiation of hematopoietic stem cells (HSCs) during chronic viral infection to elucidate the changes in dendritic cell (DC) differentiation and subsequent impact on T cell functionality using a chronic lymphocytic choriomeningitis virus (LCMV) infection model. We first investigated the lineage differentiation of HSCs in the bone marrow (BM) to elucidate the modulation of immune cell differentiation and found that the populations highly restrained in their differentiation were common myeloid progenitors (CMPs) and common dendritic cell progenitors (CDPs). Of interest, the main immune cells infected with LCMV Clone 13 (CL13) in the BM were CD11b/c+ myeloid DCs. We next characterized CD11b+ DCs that differentiated during chronic LCMV infection. These DCs displayed a less immunogenic phenotype than DCs in naive or acutely infected mice, showing low expression of CD80 but high expression of PD-L1, B7-H4, IDO, TGF-ß, and IL-10. Consequently, these CD11b+ DCs induced less effective CD8+ T cells and more Foxp3+ regulatory T (Treg) cells. Furthermore, CD11b+ DCs generated during CL13 infection could not induce effective CD8+ T cells specific to the antigens of newly invading pathogens. Our findings demonstrate that DCs generated from the BM during chronic viral infection cannot activate fully functional effector CD8+ T cells specific to newly incoming antigens as well as persistent antigens themselves, suggesting a potential cause of the functional alterations in the T cell immune response during chronic viral infection.


Assuntos
Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Camundongos , Animais , Vírus da Coriomeningite Linfocítica/genética , Linfócitos T CD8-Positivos , Linfócitos T Reguladores , Células Dendríticas , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 13: 976196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483544

RESUMO

Reprogramming M2-type, pro-tumoral tumor-associated macrophages (TAMs) into M1-type, anti-tumoral macrophages is a key strategy in cancer therapy. In this study, we exploited epigenetic therapy using the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) and the histone deacetylation inhibitor trichostatin A (TSA), to reprogram M2-type macrophages into an M1-like phenotype. Treatment of M2-type macrophages with the combination of 5-aza-dC and TSA decreased the levels of M2 macrophage cytokines while increasing those of M1 macrophage cytokines, as compared to the use of either therapy alone. Conditioned medium of M2 macrophages treated with the combination of 5-aza-dC and TSA sensitized the tumor cells to paclitaxel. Moreover, treatment with the combination inhibited tumor growth and improved anti-tumor immunity in the tumor microenvironment. Depletion of macrophages reduced the anti-tumor growth activity of the combination therapy. Profiling of miRNAs revealed that the expression of miR-7083-5p was remarkably upregulated in M2 macrophages, following treatment with 5-aza-dC and TSA. Transfection of miR-7083-5p reprogrammed the M2-type macrophages towards an M1-like phenotype, and adoptive transfer of M2 macrophages pre-treated with miR-7083-5p into mice inhibited tumor growth. miR-7083-5p inhibited the expression of colony-stimulating factor 2 receptor alpha and CD43 as candidate targets. These results show that epigenetic therapy upon treatment with the combination of 5-aza-dC and TSA skews M2-type TAMs towards the M1-like phenotype by upregulating miR-7083-5p, which contributes to the inhibition of tumor growth.


Assuntos
Epigenômica , Macrófagos Associados a Tumor , Camundongos , Animais , Processamento de Proteína Pós-Traducional , Transfecção
6.
J Dermatol Sci ; 106(3): 159-169, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35610161

RESUMO

BACKGROUND: Nicotinamide mononucleotide (NMN) is a representative anti-aging drug that, after long-term administration in mice, causes an increase in energy and lipid metabolism, improves eye function, immune response, and increases insulin sensitivity. However, the effects of NMN on skin pigmentation are still unknown. OBJECTIVE: In this study, we aimed to demonstrate the effects of NMN on melanogenesis. METHODS: NMN was applied to both young and aged melanocytes, and melanin production, protein expression, and mRNA levels were analyzed. A reconstituted human skin model was used to validate the effect of NMN on melanogenesis in vivo. RESULTS: NMN treatment showed no apparent effects on young melanocytes, however, in aged melanocytes, a marked reduction in melanin production was observed. NMN treatment also efficiently reduced melanin production in a reconstituted human skin with aged melanocytes. Genome-wide analysis showed the downregulation of melanogenesis-related cyclic adenosine monophosphate (cAMP)/Wnt signaling in aged melanocytes. Moreover, NMN treatment downregulated forskolin-induced expression of melanogenesis-related proteins, tyrosinase (TYR), tyrosinase-related protein (TRP)- 1, and TRP-2. Nicotinamide adenine dinucleotide (NAD+), an NMN product within the cells, also reduced cAMP/Wnt signaling in aged melanocytes. SLC12A6 was the most highly expressed gene among the SLC12A family members in melanocytes and was significantly influenced by NMN or NAD+ treatment, indicating that SLC12A6 protein is an NMN transporter in melanocytes. CONCLUSION: NMN reduces melanogenesis in aged melanocytes by downregulating the signaling of melanogenesis-associated receptors. Therefore, NMN is a human-friendly anti-melanogenic agent with the potential to aid in aging-related hyperpigmentation therapy.


Assuntos
Melaninas , Mononucleotídeo de Nicotinamida , Animais , AMP Cíclico/metabolismo , Melanócitos/metabolismo , Camundongos , Monofenol Mono-Oxigenase/metabolismo , NAD/metabolismo , NAD/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Via de Sinalização Wnt
7.
Cell Rep ; 38(8): 110408, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196497

RESUMO

The adipose tissue is a key site regulating energy metabolism. One of the contributing factors behind this is browning of white adipose tissue (WAT). However, knowledge of the intracellular determinants of the browning process remains incomplete. By generating adipocyte-specific Senp2 knockout (Senp2-aKO) mice, here we show that SENP2 negatively regulates browning by de-conjugating small ubiquitin-like modifiers from C/EBPß. Senp2-aKO mice are resistant to diet-induced obesity due to increased energy expenditure and heat production. Senp2 knockout promotes beige adipocyte accumulation in inguinal WAT by upregulation of thermogenic gene expression. In addition, SENP2 knockdown promotes thermogenic adipocyte differentiation of precursor cells isolated from inguinal and epididymal WATs. Mechanistically, sumoylated C/EBPß, a target of SENP2, suppresses expression of HOXC10, a browning inhibitor, by recruiting a transcriptional repressor DAXX. These findings indicate that a SENP2-C/EBPß-HOXC10 axis operates for the control of beige adipogenesis in inguinal WAT.


Assuntos
Adipócitos Bege , Proteína beta Intensificadora de Ligação a CCAAT , Cisteína Endopeptidases , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Adipócitos Bege/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Cisteína Endopeptidases/metabolismo , Metabolismo Energético/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Termogênese/genética
8.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504016

RESUMO

Expression and function of odorant receptors (ORs), which account for more than 50% of G protein-coupled receptors, are being increasingly reported in nonolfactory sites. However, ORs that can be targeted by drugs to treat diseases remain poorly identified. Tumor-derived lactate plays a crucial role in multiple signaling pathways leading to generation of tumor-associated macrophages (TAMs). In this study, we hypothesized that the macrophage OR Olfr78 functions as a lactate sensor and shapes the macrophage-tumor axis. Using Olfr78+/+ and Olfr78-/- bone marrow-derived macrophages with or without exogenous Olfr78 expression, we demonstrated that Olfr78 sensed tumor-derived lactate, which was the main factor in tumor-conditioned media responsible for generation of protumoral M2-TAMs. Olfr78 functioned together with Gpr132 to mediate lactate-induced generation of protumoral M2-TAMs. In addition, syngeneic Olfr78-deficient mice exhibited reduced tumor progression and metastasis together with an increased anti- versus protumoral immune cell population. We propose that the Olfr78-lactate interaction is a therapeutic target to reduce and prevent tumor progression and metastasis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Acoplados a Proteínas G/fisiologia , Receptores Odorantes/fisiologia , Transdução de Sinais , Microambiente Tumoral , Macrófagos Associados a Tumor/fisiologia
10.
Cancers (Basel) ; 13(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920906

RESUMO

NK cells are the predominant innate lymphocyte subsets specialized to kill malignant tumor cells. In patients with advanced cancer, hypoxic stress shapes NK cells toward tumor-resistant and immunosuppressive phenotypes, hence a strategy to restore NK function is critical for successful tumor immunotherapy. Here, we present evidence that pre-activation and subsequent HIF-1α-dependent metabolic shift of NK cells from oxidative phosphorylation into glycolysis are keys to overcome hypoxia-mediated impairment in NK cell survival, proliferation, and tumor cytotoxicity. Specifically, exposing NK cells to 7-9 days of normoxic culture followed by a pO2 of 1.5% hypoxia led to a highly potent effector phenotype via HIF-1α stabilization and upregulation of its target genes, BNIP3, PDK1, VEGF, PKM2, and LDHA. RNA sequencing and network analyses revealed that concomitant reduction of p21/p53 apoptotic pathways along with upregulation of cell cycle-promoting genes, CCNE1, CDC6, CDC20, and downregulation of cell cycle-arrest genes, CDKN1A, GADD45A, and MDM2 were accountable for superior expansion of NK cells via ERK/STAT3 activation. Furthermore, HIF-1α-dependent upregulation of the NKp44 receptor in hypoxia-exposed NK cells resulted in increased killing against K562, CEM, and A375 tumor targets both in-vitro and in-vivo tumor clearance assays. Therefore, hypoxic exposure on pre-activated proliferating NK cells triggered HIF-1α-dependent pathways to initiate coordinated regulation of cell cycle, apoptosis, and cytotoxicity at the global gene transcription level. Our results uncover a previously unidentified role of HIF-1α-mediated metabolic reprogramming that can reverse impaired NK effector phenotypes to generate requisite numbers of functionally robust NK cells for adoptive cellular therapy for clinical evaluation.

11.
Sci Rep ; 11(1): 8551, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879814

RESUMO

Targeting T-Cell Immunoreceptor with Ig and ITIM domain-poliovirus receptor (PVR) pathway is a potential therapeutic strategy in lung cancer. We analyzed the expression of PVR and programmed death ligand-1 (PD-L1) in surgically resected squamous cell lung carcinoma (SQCC) and determined its prognostic significance. We collected archival surgical specimens and data of 259 patients with SQCC at Yonsei Cancer Center (1998-2020). Analysis of variance was used to analyze the correlations between PVR and PD-L1 expression and patient characteristics. Kaplan-Meier curves were used to estimate recurrence-free survival (RFS) and overall survival (OS). Most patients were male (93%); the majority were diagnosed with stage 1 (47%), followed by stage 2 (29%) and stage 3 (21%). Overexpression of PVR resulted in a significantly shorter median RFS and OS (P = 0.01). PD-L1 expression was not significant in terms of prognosis. Patients were subdivided into four groups based on low and high PVR and PD-L1 expression. Those expressing high levels of PVR and PD-L1 had the shortest RFS (P = 0.03). PVR overexpression is associated with a poor prognosis in surgically resected SQCC. Inhibition of PVR as well as PD-L1 may help overcome the lack of response to immune checkpoint monotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Receptores Virais/metabolismo , Idoso , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/cirurgia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Prognóstico , Taxa de Sobrevida
12.
J Cancer Res Clin Oncol ; 147(9): 2741-2750, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33616718

RESUMO

PURPOSE: We aimed to investigate the prognostic value of multiple immune cell markers including programmed death-ligand 1 (PD-L1) and poliovirus receptor (PVR) in head and neck squamous cell carcinoma (HNSCC) using archival tumor tissues METHODS: Patients diagnosed with HNSCC who have undergone surgical resection in 2005-2012 were included. Correlations between PVR and PD-L1 expression and patient characteristics were analyzed by analysis of variance. The Kaplan-Meier method and log-rank test were used to estimate survival. P values < 0.05 were considered statistically significant. RESULTS: In total, 375 primary tumor tissues were analyzed using immunohistochemistry. High PVR expression was associated with a poor prognosis in terms of overall survival (OS) and recurrence-free survival (RFS), and tumors with high PVR expression were associated with a short OS. PD-L1 tumor expression did not have a prognostic impact on survival. Univariate analysis revealed that OS and RFS were affected by age and p16 and PVR expression; multivariate analysis revealed that age and p16 and PVR expression were the most important determinants of RFS. CONCLUSION: PVR overexpression is a poor prognostic factor in patients with HNSCC and co-targeting PVR and PD-L1 may be a promising therapeutic option that needs further investigation.


Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Receptores Virais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Procedimentos Cirúrgicos Operatórios/mortalidade , Idoso , Feminino , Seguimentos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Taxa de Sobrevida
13.
Sci Rep ; 11(1): 2012, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479312

RESUMO

Despite the advancement of targeted therapy for pulmonary arterial hypertension (PAH), poor prognosis remains a reality. Mesenchymal stem cells (MSCs) are one of the most clinically feasible alternative treatment options. We compared the treatment effects of adipose tissue (AD)-, bone marrow (BD)-, and umbilical cord blood (UCB)-derived MSCs in the rat monocrotaline-induced pulmonary hypertension (PH) model. The greatest improvement in the right ventricular function was observed in the UCB-MSCs treated group. The UCB-MSCs treated group also exhibited the greatest improvement in terms of the largest decrease in the medial wall thickness, perivascular fibrosis, and vascular cell proliferation, as well as the lowest levels of recruitment of innate and adaptive immune cells and associated inflammatory cytokines. Gene expression profiling of lung tissue confirmed that the UCB-MSCs treated group had the most notably attenuated immune and inflammatory profiles. Network analysis further revealed that the UCB-MSCs group had the greatest therapeutic effect in terms of the normalization of all three classical PAH pathways. The intravenous injection of the UCB-MSCs, compared with those of other MSCs, showed superior therapeutic effects in the PH model for the (1) right ventricular function, (2) vascular remodeling, (3) immune/inflammatory profiles, and (4) classical PAH pathways.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Mesenquimais , Hipertensão Arterial Pulmonar/terapia , Remodelação Vascular/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células/genética , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/crescimento & desenvolvimento , Artéria Pulmonar/patologia , Ratos , Função Ventricular Direita/genética
14.
J Ginseng Res ; 45(1): 126-133, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437164

RESUMO

BACKGROUND: 20(S)-protopanaxadiol (20(S)-PPD), one of the aglycone derivatives of major ginsenosides, has been shown to have an anticancer activity toward a variety of cancers. This study was initiated with an attempt to evaluate its anti-cancer activity toward human endometrial cancer by cell and xenograft mouse models. METHODS: Human endometrial cancer (HEC)-1A cells were incubated with different 20(S)-PPD concentrations. 20(S)-PPD cytotoxicity was evaluated using MTT assay. Apoptosis was detected using the annexin V binding assay and cell cycle analysis. Cleaved poly (ADP-ribose) polymerase (PARP) and activated caspase-9 were assessed using western blotting. HEC-1A cell tumor xenografts in athymic mice were generated by inoculating HEC-1A cells into the flank of BALB/c female mice and explored to validate 20(S)-PPD anti-endometrial cancer toxicity. RESULTS: 20(S)-PPD inhibited HEC-1A cell proliferation in a dose-dependent manner with an IC50 value of 3.5 µM at 24 h. HEC-1A cells morphologically changed after 20(S)-PPD treatment, bearing resemblance to Taxol-treated cells. Annexin V-positive cell percentages were 0%, 10.8%, and 58.1% in HEC-1A cells when treated with 0, 2.5, and 5 µM of 20(S)-PPD, respectively, for 24 h. 20(S)-PPD subcutaneously injected into the HEC-1A cell xenograft-bearing mice three times a week for 17 days manifested tumor growth inhibition by as much as 18% at a dose of 80 mg/kg, which sharply contrasted to controls that showed an approximately 2.4-fold tumor volume increase. These events paralleled caspase-9 activation and PARP cleavage. CONCLUSION: 20(S)-PPD inhibits endometrial cancer cell proliferation by inducing cell death via a caspase-mediated apoptosis pathway. Therefore, the 20(S)-PPD-like ginsenosides are endowed with ample structural information that could be utilized to develop other ginsenoside-based anticancer agents.

15.
JCI Insight ; 5(14)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32554931

RESUMO

Expression of immune checkpoint ligands (ICLs) is necessary to trigger the inhibitory signal via immune checkpoint receptors (ICRs) in exhausted T cells under tumor immune microenvironment. Nevertheless,to our knowledge, ICL expression profile in cancer patients has not been investigated. Using previously reported RNA-seq data sets, we found that expression of ICLs was patient specific but their coexpression can be patterned in non-small-cell lung cancers (NSCLCs). Since the expression of PD-L1 and poliovirus receptor (PVR) among various ICLs was independently regulated, we could stratify the patients who were treated with anti-PD-1 later into 4 groups according to the expression level of PD-L1 and PVR. Of interest, high PVR and low PVR expressions in PD-L1-expressing patients enriched nonresponders and responders to PD-1 blockade, respectively, helping in further selection of responders. Using a genetically engineered cancer model, we also found that PVR-deficient and PD-L1-sufficient tumor-bearing mice were highly sensitive to anti-PD-1 therapy, whereas PVR-sufficient and PD-L1-deficient tumor-bearing mice were resistant to anti-PD-1 therapy. Taken together, our study provides a concept that combinatorial expression patterns of PVR and PD-L1 are key determinants for PD-1 blockade and furthermore suggest a better therapeutic usage of immune checkpoint blockades (ICBs).


Assuntos
Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptor de Morte Celular Programada 1/genética , Receptores Virais/genética , Idoso , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Arch Toxicol ; 94(3): 887-909, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080758

RESUMO

Polyhexamethylene guanidine phosphate (PHMG-p) was used as a humidifier disinfectant in Korea. PHMG induced severe pulmonary fibrosis in Koreans. The objective of this study was to elucidate mechanism of pulmonary toxicity caused by PHMG-p in rats using multi-omics analysis. Wistar rats were intratracheally instilled with PHMG-p by single (1.5 mg/kg) administration or 4-week (0.1 mg/kg, 2 times/week) repeated administration. Histopathologic examination was performed with hematoxylin and eosin staining. Alveolar macrophage aggregation and granulomatous inflammation were observed in rats treated with single dose of PHMG-p. Pulmonary fibrosis, chronic inflammation, bronchiol-alveolar fibrosis, and metaplasia of squamous cell were observed in repeated dose group. Next generation sequencing (NGS) was performed for transcriptome profiling after mRNA isolation from bronchiol-alveoli. Bronchiol-alveoli proteomic profiling was performed using an Orbitrap Q-exactive mass spectrometer. Serum and urinary metabolites were determined using 1H-NMR. Among 418 differentially expressed genes (DEGs) and 67 differentially expressed proteins (DEPs), changes of 16 mRNA levels were significantly correlated with changes of their protein levels in both single and repeated dose groups. Remarkable biological processes represented by both DEGs and DEPs were defense response, inflammatory response, response to stress, and immune response. Arginase 1 (Arg1) and lipocalin 2 (Lcn2) were identified to be major regulators for PHMG-p-induced pulmonary toxicity based on merged analysis using DEGs and DEPs. In metabolomics study, 52 metabolites (VIP > 0.5) were determined in serum and urine of single and repeated-dose groups. Glutamate and choline were selected as major metabolites. They were found to be major factors affecting inflammatory response in association with DEGs and DEPs. Arg1 and Lcn2 were suggested to be major gene and protein related to pulmonary damage by PHMG-p while serum or urinary glutamate and choline were endogenous metabolites related to pulmonary damage by PHMG-p.


Assuntos
Desinfetantes/toxicidade , Guanidinas/toxicidade , Lesão Pulmonar/induzido quimicamente , Animais , Biomarcadores/metabolismo , Biologia Computacional , Células Epiteliais , Perfilação da Expressão Gênica , Umidificadores , Pulmão , Lesão Pulmonar/veterinária , Masculino , Metabolômica , Proteômica , Alvéolos Pulmonares , Fibrose Pulmonar , Ratos , Ratos Wistar , República da Coreia , Testes de Toxicidade , Transcriptoma
17.
FEBS J ; 287(17): 3841-3870, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32003140

RESUMO

Microglia (MG), the principal neuroimmune sentinels in the brain, continuously sense changes in their environment and respond to invading pathogens, toxins, and cellular debris, thereby affecting neuroinflammation. Microbial pathogens produce small metabolites that influence neuroinflammation, but the molecular mechanisms that determine whether pathogen-derived small metabolites affect microglial activation of neuroinflammation remain to be elucidated. We hypothesized that odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, are involved in microglial activation by pathogen-derived small metabolites. We found that MG express high levels of two mouse ORs, Olfr110 and Olfr111, which recognize a pathogenic metabolite, 2-pentylfuran, secreted by Streptococcus pneumoniae. These interactions activate MG to engage in chemotaxis, cytokine production, phagocytosis, and reactive oxygen species generation. These effects were mediated through the Gαs -cyclic adenosine monophosphate-protein kinase A-extracellular signal-regulated kinase and Gßγ -phospholipase C-Ca2+ pathways. Taken together, our results reveal a novel interplay between the pathogen-derived metabolite and ORs, which has major implications for our understanding of microglial activation by pathogen recognition. DATABASE: Model data are available in the PMDB database under the accession number PM0082389.


Assuntos
Furanos/farmacologia , Microglia/efeitos dos fármacos , Receptores Odorantes/fisiologia , Streptococcus pneumoniae/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/genética , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/genética , Furanos/isolamento & purificação , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Fagocitose/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Odorantes/genética , Transdução de Sinais , Superóxidos/metabolismo
18.
J Extracell Vesicles ; 10(1): e12029, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33708357

RESUMO

Glycyl-tRNA synthetase 1 (GARS1), a cytosolic enzyme secreted from macrophages, promotes apoptosis in cancer cells. However, the mechanism underlying GARS1 secretion has not been elucidated. Here, we report that GARS1 is secreted through unique extracellular vesicles (EVs) with a hydrodynamic diameter of 20-58 nm (mean diameter: 36.9 nm) and a buoyant density of 1.13-1.17 g/ml. GARS1 was anchored to the surface of these EVs through palmitoylated C390 residue. Proteomic analysis identified 164 proteins that were uniquely enriched in the GARS1-containing EVs (GARS1-EVs). Among the identified factors, insulin-like growth factor II receptor, and vimentin also contributed to the anti-cancer activity of GARS1-EVs. This study identified the unique secretory vesicles containing GARS1 and various intracellular factors that are involved in the immunological defence response against tumorigenesis.


Assuntos
Apoptose/imunologia , Vesículas Extracelulares/imunologia , Glicina-tRNA Ligase/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Proteínas Supressoras de Tumor/imunologia , Animais , Carcinogênese/imunologia , Linhagem Celular Tumoral , Camundongos , Células RAW 264.7
19.
Sci Rep ; 9(1): 15042, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636298

RESUMO

Fibrosarcoma is a skin tumor that is frequently observed in humans, dogs, and cats. Despite unsightly appearance, studies on fibrosarcoma have not significantly progressed, due to a relatively mild tumor severity and a lower incidence than that of other epithelial tumors. Here, we focused on the role of a recently-found dermis zinc transporter, ZIP13, in fibrosarcoma progression. We generated two transformed cell lines from wild-type and ZIP13-KO mice-derived dermal fibroblasts by stably expressing the Simian Virus (SV) 40-T antigen. The ZIP13-/- cell line exhibited an impairment in autophagy, followed by hypersensitivity to nutrient deficiency. The autophagy impairment in the ZIP13-/- cell line was due to the low expression of LC3 gene and protein, and was restored by the DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza) treatment. Moreover, the DNA methyltransferase activity was significantly increased in the ZIP13-/- cell line, indicating the disturbance of epigenetic regulations. Autophagy inhibitors effectively inhibited the growth of fibrosarcoma with relatively minor damages to normal cells in xenograft assay. Our data show that proper control over autophagy and zinc homeostasis could allow for the development of a new therapeutic strategy to treat fibrosarcoma.


Assuntos
Autofagia , Proteínas de Transporte de Cátions/deficiência , Derme/metabolismo , Fibrossarcoma/patologia , Animais , Autofagia/efeitos dos fármacos , Azacitidina/farmacologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Etilenodiaminas/farmacologia , Fibrossarcoma/genética , Humanos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Zinco/metabolismo
20.
Obes Surg ; 29(8): 2399-2408, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31037598

RESUMO

BACKGROUND: Ileal transposition (IT) is an experimental surgery to investigate the role of the distal ileum in Roux-en-Y gastric bypass (RYGB) surgery. To systematically investigate the dynamic adaptation process of the ileum after IT, we performed transcriptome analyses of the transposed ileum compared with the ileum in situ at different postoperative time points. METHODS: Sprague-Dawley rats fed a chow diet underwent IT or sham surgery. One and 4 weeks after IT or sham surgery, total RNA was extracted from the ileal tissue and subjected to transcriptome analyses using microarray. RESULTS: Principal component analysis showed that the difference between weeks 1 and 4 was the largest, and the differences between the IT and sham groups were larger in week 4 than in week 1. We identified 1792 differentially expressed genes (DEGs) between IT and sham ileal tissues, including 659 and 1133 DEGs in weeks 1 and 4, respectively. Interestingly, only 45 and 24 DEGs were commonly up- or downregulated in weeks 1 and 4, indicating a marked transition during the adaptation process. Functional enrichment and network analyses showed that structural adaptation predominantly occurred in week 1, while metabolic and immune adaptations predominantly occurred in week 4. These analyses further revealed potential components that modulate structural adaptation (e.g., extracellular matrix) in week 1 and metabolic (e.g., glucose transporter) and immune (e.g., Th17 cells) adaptations in week 4. CONCLUSIONS: The transposed distal ileum underwent dynamic adaptation processes that may help explain the metabolic changes after RYGB.


Assuntos
Adaptação Fisiológica , Derivação Gástrica/métodos , Perfilação da Expressão Gênica , Íleo/cirurgia , Intestino Delgado/cirurgia , Animais , Íleo/metabolismo , Masculino , Análise em Microsséries , Modelos Animais , RNA/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA