Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 72(9): 1320-1329, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358194

RESUMO

Congenital hyperinsulinism (HI) is a genetic disorder in which pancreatic ß-cell insulin secretion is excessive and results in hypoglycemia that, without treatment, can cause brain damage or death. Most patients with loss-of-function mutations in ABCC8 and KCNJ11, the genes encoding the ß-cell ATP-sensitive potassium channel (KATP), are unresponsive to diazoxide, the only U.S. Food and Drug Administration-approved medical therapy and require pancreatectomy. The glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin-(9-39) is an effective therapeutic agent that inhibits insulin secretion in both HI and acquired hyperinsulinism. Previously, we identified a highly potent antagonist antibody, TB-001-003, which was derived from our synthetic antibody libraries that were designed to target G protein-coupled receptors. Here, we designed a combinatorial variant antibody library to optimize the activity of TB-001-003 against GLP-1R and performed phage display on cells overexpressing GLP-1R. One antagonist, TB-222-023, is more potent than exendin-(9-39), also known as avexitide. TB-222-023 effectively decreased insulin secretion in primary isolated pancreatic islets from a mouse model of hyperinsulinism, Sur1-/- mice, and in islets from an infant with HI, and increased plasma glucose levels and decreased the insulin to glucose ratio in Sur1-/- mice. These findings demonstrate that targeting GLP-1R with an antibody antagonist is an effective and innovative strategy for treatment of hyperinsulinism. ARTICLE HIGHLIGHTS: Patients with the most common and severe form of diazoxide-unresponsive congenital hyperinsulinism (HI) require a pancreatectomy. Other second-line therapies are limited in their use because of severe side effects and short half-lives. Therefore, there is a critical need for better therapies. Studies with the glucagon-like peptide 1 receptor (GLP-1R) antagonist, avexitide (exendin-(9-39)), have demonstrated that GLP-1R antagonism is effective at lowering insulin secretion and increasing plasma glucose levels. We have optimized a GLP-1R antagonist antibody with more potent blocking of GLP-1R than avexitide. This antibody therapy is a potential novel and effective treatment for HI.


Assuntos
Hiperinsulinismo Congênito , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hiperinsulinismo , Animais , Camundongos , Anticorpos/uso terapêutico , Glicemia , Hiperinsulinismo Congênito/tratamento farmacológico , Hiperinsulinismo Congênito/genética , Diazóxido/farmacologia , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Hiperinsulinismo/imunologia , Hiperinsulinismo/terapia , Mutação , Receptores de Sulfonilureias/genética
2.
J Biol Chem ; 299(6): 104816, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178920

RESUMO

Congenital hyperinsulinism (HI), a beta cell disorder most commonly caused by inactivating mutations of beta cell KATP channels, results in dysregulated insulin secretion and persistent hypoglycemia. Children with KATP-HI are unresponsive to diazoxide, the only FDA-approved drug for HI, and utility of octreotide, the second-line therapy, is limited because of poor efficacy, desensitization, and somatostatin receptor type 2 (SST2)-mediated side effects. Selective targeting of SST5, an SST receptor associated with potent insulin secretion suppression, presents a new avenue for HI therapy. Here, we determined that CRN02481, a highly selective nonpeptide SST5 agonist, significantly decreased basal and amino acid-stimulated insulin secretion in both Sur1-/- (a model for KATP-HI) and wild-type mouse islets. Oral administration of CRN02481 significantly increased fasting glucose and prevented fasting hypoglycemia compared to vehicle in Sur1-/- mice. During a glucose tolerance test, CRN02481 significantly increased glucose excursion in both WT and Sur1-/- mice compared to the control. CRN02481 also reduced glucose- and tolbutamide-stimulated insulin secretion from healthy, control human islets similar to the effects observed with SS14 and peptide somatostatin analogs. Moreover, CRN02481 significantly decreased glucose- and amino acid-stimulated insulin secretion in islets from two infants with KATP-HI and one with Beckwith-Weideman Syndrome-HI. Taken together, these data demonstrate that a potent and selective SST5 agonist effectively prevents fasting hypoglycemia and suppresses insulin secretion not only in a KATP-HI mouse model but also in healthy human islets and islets from HI patients.


Assuntos
Hiperinsulinismo , Receptores de Somatomedina , Animais , Criança , Humanos , Lactente , Camundongos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Glucose/metabolismo , Hiperinsulinismo/tratamento farmacológico , Hipoglicemia/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Somatomedina/agonistas
3.
PLoS One ; 15(7): e0236892, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735622

RESUMO

There is a significant unmet need for a safe and effective therapy for the treatment of children with congenital hyperinsulinism. We hypothesized that amplification of the glucagon signaling pathway could ameliorate hyperinsulinism associated hypoglycemia. In order to test this we evaluated the effects of loss of Prkar1a, a negative regulator of Protein Kinase A in the context of hyperinsulinemic conditions. With reduction of Prkar1a expression, we observed a significant upregulation of hepatic gluconeogenic genes. In wild type mice receiving a continuous infusion of insulin by mini-osmotic pump, we observed a 2-fold increase in the level of circulating ketones and a more than 40-fold increase in Kiss1 expression with reduction of Prkar1a. Loss of Prkar1a in the Sur1-/- mouse model of KATP hyperinsulinism significantly attenuated fasting induced hypoglycemia, decreased the insulin/glucose ratio, and also increased the hepatic expression of Kiss1 by more than 10-fold. Together these data demonstrate that amplification of the hepatic glucagon signaling pathway is able to rescue hypoglycemia caused by hyperinsulinism.


Assuntos
Hiperinsulinismo Congênito/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Kisspeptinas/genética , Receptores de Sulfonilureias/genética , Animais , Hiperinsulinismo Congênito/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Gluconeogênese/genética , Glucose/metabolismo , Hipoglicemia/metabolismo , Insulina/metabolismo , Cetonas/metabolismo , Kisspeptinas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais
4.
Brain Behav Immun ; 71: 23-27, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678794

RESUMO

Inflammatory bowel disease (IBD) is a debilitating immune-related condition that affects over 1.4 million Americans. Recent studies indicate that taste receptor signaling is involved in much more than sensing food flavor, and taste receptors have been localized in a variety of extra-oral tissues. One of the newly revealed functions of taste receptors and downstream signaling proteins is modulation of immune responses to microbes and parasites. We previously found that components of the taste receptor signaling pathway are expressed in subsets of the intestinal epithelial cells. α-Gustducin, a key G-protein α subunit involved in sweet, umami, and bitter taste receptor signaling, is expressed in the intestinal mucosa. In this study, we investigated the role of α-gustducin in regulation of gut mucosal immunity and inflammation using α-gustducin knockout mice in the dextran sulfate sodium (DSS)-induced IBD model. DSS is a chemical colitogen that can cause intestinal epithelial damage and inflammation. We analyzed DSS-induced colitis in α-gustducin knockout versus wild-type control mice after administration of DSS in drinking water. Our results show that the knockout mice had aggravated weight loss, diarrhea, intestinal bleeding, and inflammation over the experimental period compared to wild-type mice, concurrent with augmented immune cell infiltration and increased expression of TNF and IFN-γ but decreased expression of IL-13 and IL-5 in the colon. These results suggest that the taste receptor signaling pathway may play critical roles in regulating gut immune balance and inflammation.


Assuntos
Mucosa Intestinal/metabolismo , Transducina/metabolismo , Transducina/fisiologia , Animais , Colite/fisiopatologia , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/fisiopatologia , Interferon gama/metabolismo , Mucosa Intestinal/imunologia , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , Paladar/fisiologia , Papilas Gustativas/metabolismo , Transducina/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
J Clin Endocrinol Metab ; 103(3): 1042-1047, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329447

RESUMO

Context: Persistent hypoglycemia in the newborn period most commonly occurs as a result of hyperinsulinism. The phenotype of hypoketotic hypoglycemia can also result from pituitary hormone deficiencies, including growth hormone and adrenocorticotropic hormone deficiency. Forkhead box A2 (Foxa2) is a transcription factor shown in mouse models to influence insulin secretion by pancreatic ß cells. In addition, Foxa2 is involved in regulation of pituitary development, and deletions of FOXA2 have been linked to panhypopituitarism. Objective: To describe an infant with congenital hyperinsulinism and hypopituitarism as a result of a mutation in FOXA2 and to determine the functional impact of the identified mutation. Main Outcome Measure: Difference in wild-type (WT) vs mutant Foxa2 transactivation of target genes that are critical for ß cell function (ABCC8, KNCJ11, HADH) and pituitary development (GLI2, NKX2-2, SHH). Results: Transactivation by mutant Foxa2 of all genes studied was substantially decreased compared with WT. Conclusions: We report a mutation in FOXA2 leading to congenital hyperinsulinism and hypopituitarism and provide functional evidence of the molecular mechanism responsible for this phenotype.


Assuntos
Hiperinsulinismo Congênito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Hipopituitarismo/congênito , Mutação , Feminino , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Recém-Nascido , Proteínas Nucleares , Fatores de Transcrição
6.
Brain Behav Immun ; 49: 32-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25911043

RESUMO

Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases.


Assuntos
Quinina , Percepção Gustatória/fisiologia , Paladar/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Comportamento Animal/fisiologia , Nervo da Corda do Tímpano/fisiologia , Ácido Cítrico , Feminino , Inosina Monofosfato , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sacarina , Cloreto de Sódio , Glutamato de Sódio , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
J Neurosci ; 34(7): 2689-701, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24523558

RESUMO

Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.


Assuntos
Interleucina-10/biossíntese , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Hibridização In Situ , Interleucina-10/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-10/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Papilas Gustativas/imunologia , Fator de Necrose Tumoral alfa/biossíntese
8.
PLoS One ; 7(8): e43140, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905218

RESUMO

Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.


Assuntos
Regulação da Expressão Gênica , Papilas Gustativas/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Sistema Imunitário , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Paladar , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA