Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1213947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965307

RESUMO

Background: During tumor growth, tumor cells interact with their tumor microenvironment (TME) resulting in the development of heterogeneous tumors that promote tumor occurrence and progression. Recently, there has been extensive attention on TME as a possible therapeutic target for cancers. However, an accurate TME-related prediction model is urgently needed to aid in the assessment of patients' prognoses and therapeutic value, and to assist in clinical decision-making. As such, this study aimed to develop and validate a new prognostic model based on TME-associated genes for BC patients. Methods: Transcriptome data and clinical information for BC patients were extracted from The Cancer Genome Atlas (TCGA) database. Gene Expression Omnibus (GEO) and IMvigor210 databases, along with the MSigDB, were utilized to identify genes associated with TMEs (TMRGs). A consensus clustering approach was used to identify molecular clusters associated with TMEs. LASSO Cox regression analysis was conducted to establish a prognostic TMRG-related signature, with verifications being successfully conducted internally and externally. Gene ontology (GO), KEGG, and single-sample gene set enrichment analyses (ssGSEA) were performed to investigate the underlying mechanisms. The potential response to ICB therapy was estimated using the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and Immunophenoscore (IPS). Additionally, it was found that the expression level of certain genes in the model was significantly correlated with objective responses to anti-PD-1 or anti-PD-L1 treatment in the IMvigor210, GSE111636, GSE176307, or Truce01 (registration number NCT04730219) cohorts. Finally, real-time PCR validation was performed on 10 paired tissue samples, and in vitro cytological experiments were also conducted on BC cell lines. Results: In BC patients, 133 genes differentially expressed that were associated with prognosis in TME. Consensus clustering analysis revealed three distinct clinicopathological characteristics and survival outcomes. A novel prognostic model based on nine TMRGs (including C3orf62, DPYSL2, GZMA, SERPINB3, RHCG, PTPRR, STMN3, TMPRSS4, COMP) was identified, and a TMEscore for OS prediction was constructed, with its reliable predictive performance in BC patients being validated. MultiCox analysis showed that the risk score was an independent prognostic factor. A nomogram was developed to facilitate the clinical viability of TMEscore. Based on GO and KEGG enrichment analyses, biological processes related to ECM and collagen binding were significantly enriched among high-risk individuals. In addition, the low-risk group, characterized by a higher number of infiltrating CD8+ T cells and a lower burden of tumor mutations, demonstrated a longer survival time. Our study also found that TMEscore correlated with drug susceptibility, immune cell infiltration, and the prediction of immunotherapy efficacy. Lastly, we identified SERPINB3 as significantly promoting BC cells migration and invasion through differential expression validation and in vitro phenotypic experiments. Conclusion: Our study developed a prognostic model based on nine TMRGs that accurately and stably predicted survival, guiding individual treatment for patients with BC, and providing new therapeutic strategies for the disease.


Assuntos
Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Microambiente Tumoral/genética , Neoplasias da Bexiga Urinária/genética , Prognóstico , Nomogramas , Imunoterapia
2.
BMC Med Genomics ; 16(1): 264, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880682

RESUMO

Tumor Metabolism is strongly correlated with prognosis. Nevertheless, the prognostic and therapeutic value of metabolic-associated genes in BCa patients has not been fully elucidated. First, in this study, metabolism-related differential expressed genes DEGs with prognostic value in BCa were determined. Through the consensus clustering algorithm, we identified two molecular clusters with significantly different clinicopathological features and survival prognosis. Next, a novel metabolism-related prognostic model was established. Its reliable predictive performance in BCa was verified by multiple external datasets. Multivariate Cox analysis exhibited that risk score were independent prognostic factors. Interestingly, GSEA enrichment analysis of GO, KEGG, and Hallmark gene sets showed that the biological processes and pathways associated with ECM and collagen binding in the high-risk group were significantly enriched. Notely, the model was also significantly correlated with drug sensitivity, immune cell infiltration, and immunotherapy efficacy prediction by the wilcox rank test and chi-square test. Based on the 7 immune infiltration algorithm, we found that Neutrophils, Myeloid dendritic cells, M2 macrophages, Cancer-associated fibroblasts, etc., were more concentrated in the high-risk group. Additionally, in the IMvigor210, GSE111636, GSE176307, or our Truce01 (registration number NCT04730219) cohorts, the expression levels of multiple model genes were significantly correlated with objective responses to anti-PD-1/anti-PD-L1 immunotherapy. Finally, the expression of interested model genes were verified in 10 pairs of BCa tissues and para-carcinoma tissues by the HPA and real-time fluorescent quantitative PCR. Altogether, the signature established and validated by us has high predictive power for the prognosis, immunotherapy responsiveness, and chemotherapy sensitivity of BCa.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Prognóstico , Algoritmos , Análise por Conglomerados , Consenso , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA