Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Anal Chem ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838250

RESUMO

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.

2.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691765

RESUMO

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Carbono , Técnicas Eletroquímicas , Ferro , Medições Luminescentes , MicroRNAs , Pontos Quânticos , MicroRNAs/análise , Carbono/química , Ferro/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção
3.
Anal Chem ; 96(11): 4589-4596, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442212

RESUMO

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Humanos , Európio , Ligantes , DNA/química , Medições Luminescentes/métodos , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Géis , Técnicas Eletroquímicas/métodos , Limite de Detecção
4.
Anal Chem ; 95(34): 12768-12775, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37587155

RESUMO

Herein, a surface-enhanced Raman scattering (SERS) biosensor was constructed by gold nanobipyramid (Au NBP) hotspot aggregation-induced SERS (HAI-SERS) for the ultrasensitive detection of microRNA-221 (miRNA-221). Impressively, compared with single Au NBP, the multiple Au NBPs assembled by tetrahedral DNA nanostructures (TDNs) could increase hotspot aggregation to significantly enhance the SERS signal of Raman molecule methylene blue (MB). Meanwhile, in the aid of Exo-III assisted target cycle amplification and TDNs-induced catalytic hairpin assembly (CHA) amplification, the biosensor could achieve the sensitive detection of miRNA-221 with a linear range of 1 fM-10 nM, and the limit of detection (LOD) was 0.59 fM, which could be used for practical application in MHCC-97L and MCF-7 cell lysates. This work provided a method for hotspot aggregation to enhance SERS for the detection of biomarkers and disease diagnosis.


Assuntos
MicroRNAs , Análise Espectral Raman , Catálise , Ouro , Limite de Detecção
5.
Anal Chem ; 95(35): 13156-13162, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37606955

RESUMO

Herein, by introducing gold nanostars (AuNSs) as fuel core, a near-infrared-driven nanorocket (NIDNR) with pretty fast walking was exploited for ultrasensitive miRNA detection. Compared with traditional nanomaterials-comprised nanomachines (NMs), the NIDNR possesses much better kinetic and thermodynamic performance owing to the extra photothermal driving force from localized surface plasmon (LSP). Impressively, the whole reaction time of NIDNR down to 15 min was realized, which is almost more than 8 times beyond those of conventional DNA-based NMs. This way, the inherent obstacle of traditional NMs, including long reaction time and low efficiency, could be easily addressed. As a proof of concept, the NIDNR was successfully applied to develop an electrochemical biosensing platform for rapid and sensitive detection of miRNA with an LOD down to 2.95 aM and achieved the real-time assay of real biological samples from human hepatocellular carcinoma cells (MHCC97L) and HeLa, thus providing an innovative insight to design more versatile DNA nanomachines for ultimate application in biosensing platform construction and clinical sample detection.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , MicroRNAs/química , Fatores de Tempo , Ouro , Nanopartículas Metálicas/química , Técnicas Biossensoriais , Técnicas Reprodutivas , Humanos , Linhagem Celular Tumoral
6.
Anal Chem ; 95(34): 12754-12760, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590171

RESUMO

In this study, a pH-stimulated self-locked DNA nanostructure (SLDN) was developed to efficiently distinguish cancer cells from other cells for the simultaneous detection and imaging of endogenous dual-microRNAs (miRNAs). Impressively, the SLDN was specifically unlocked in the acidic environment of cancer cells to form unlocked-SLDN to disengage the i-motif sequence with a labeled fluorophore for the recovery of a fluorescence signal, resulting in the differentiation of cancer cells from normal cells. Meanwhile, unlocked-SLDN could combine and recognize the targets miRNA-21 and miRNA-155 simultaneously to trigger the hybridization chain reaction (HCR) amplification for sensitive dual-miRNA detection, with detection limits of 1.46 pM for miRNA-21 and 0.72 pM for miRNA-155. Significantly, compared with the current miRNA imaging strategy based on the traditional DNA nanostructure, the strategy proposed here remarkably eliminates the interference of normal cells to achieve high-resolution colocation imaging of miRNAs in tumor cells with an ultralow background signal. This work provided a specific differentiation method for tumor cells to materialize sensitive biomarker detection and distinguishable high-definition live-cell imaging for precise cancer diagnosis and multifactor research of tumor progression.


Assuntos
MicroRNAs , Nanoestruturas , Neoplasias , Sequências Repetitivas de Ácido Nucleico , Diferenciação Celular , Concentração de Íons de Hidrogênio , Neoplasias/diagnóstico por imagem
7.
Anal Chim Acta ; 1274: 341447, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455065

RESUMO

Herein, we developed a novel three-dimensional (3D) self-accelerated DNA walker (SADW) which progressively expedite walking rate by unlocking the more walking arm continuously in walker process to construct electrochemical biosensor for ultrasensitive detection of microRNA. Particularly, we skillfully introduced a target analogue sequence in the double-loop hairpin, which could be released in the walking process of SADW, then rapidly activating more silenced walking strands to achieve the continuous self-acceleration, resulting in the expedited reaction rate. Surprisingly, the average reaction rate of SADW was quite higher than that of traditional 3D self-circulating DNA walkers (DW) under pretty low target miRNA concentration, which is ascribed to the outstanding acceleration process of the SADW, readily conquering the major predicaments of DW in detecting target with traces concentration: slow reaction rate and low sensitivity. This way, the elaborated SADW is favorably applied in the ultrasensitive and rapid detection of miRNA-21 in tumor cancer cell lysates with a detection limit down to 5.81 aM which was far from lower than the detection limit of DW. This approach develops the novel generation of widespread strategy for the applications in clinic diagnose, biosensing assay, and DNA nanobiotechnology.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Limite de Detecção , Técnicas Eletroquímicas/métodos , DNA/genética , Técnicas Biossensoriais/métodos
8.
Anal Chem ; 95(24): 9314-9322, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37277958

RESUMO

Herein, the novel alloyed silver gold sulfur quantum dots (AgAuS QDs) with highly efficient near-infrared (NIR) electrochemiluminescence (ECL) emission at 707 nm were successfully prepared to construct a biosensing platform for ultrasensitive detection of microRNA-222 (miRNA-222). Interestingly, AgAuS QDs revealed excellent ECL efficiency (34.91%) compared to that of Ag2S QDs (10.30%), versus the standard [Ru(bpy)3]2+/S2O82- system, which benefited from the advantages of abundant surface defects and narrow bandgaps by Au incorporation. Additionally, an improved localized catalytic hairpin self-assembly (L-CHA) system was developed to display an increased reaction speed by improving the local concentration of DNA strands, which addressed the obstacles of time-consuming traditional CHA systems. As a proof of concept, based on AgAuS QDs as an ECL emitter and improved localized CHA systems as a signal amplification strategy, a "signal on-off" ECL biosensor was developed to exhibit a superior reaction rate and excellent sensitivity with a detection limit of 10.5 aM for the target miRNA-222, which was further employed for the analysis of miRNA-222 from cancer cell (MHCC-97L) lysate. This work advances the exploration of highly efficient NIR ECL emitters to construct an ultrasensitive biosensor for the detection of biomolecules in disease diagnosis and NIR biological imaging.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Pontos Quânticos , MicroRNAs/análise , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Ouro , Enxofre , Limite de Detecção
9.
Anal Chem ; 95(17): 7021-7029, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37081730

RESUMO

In this study, nitrogen-, sulfur-, and fluorine-codoped carbon dots (NSF-CDs) with high electrochemiluminescence (ECL) efficiency were developed as novel emitters to fabricate an ECL biosensor for sensitive detection of matrix metalloproteinase 2 (MMP-2). Impressively, compared to previously reported CDs, NSF-CDs with narrow band gap not only decreased the excitation voltage to reduce the side reaction and the damage on biomolecules but also had hydrogen bonds to vastly enhance the ECL efficiency. Furthermore, an improved exonuclease III (Exo III)-assisted nucleic acid amplification method was established to convert trace MMP-2 into a mass of output DNA, which greatly improved the target conversion efficiency and ECL signal. Hence, the ECL biosensor has realized the sensitive detection of MMP-2 proteins from 10 fg/mL to 10 ng/mL with a limit of detection of 6.83 fg/mL and has been successfully applied in the detection of MMP-2 from Hela and MCF-7 cancer cells. This strategy offered neoteric CDs as ECL emitters for sensitive testing of biomarkers in medical research.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Humanos , Metaloproteinase 2 da Matriz , Flúor , Medições Luminescentes/métodos , Nitrogênio/química , Carbono/química , Técnicas Biossensoriais/métodos , Enxofre/química , Pontos Quânticos/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
10.
Chem Sci ; 14(9): 2318-2324, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36873854

RESUMO

Herein, giant DNA networks were assembled from two kinds of functionalized tetrahedral DNA nanostructures (f-TDNs) for sensitive detection and intracellular imaging of apurinic/apyrimidinic endonuclease 1 (APE1) as well as gene therapy in tumor cells. Impressively, the reaction rate of the catalytic hairpin assembly (CHA) reaction on f-TDNs was much faster than that of the conventional free CHA reaction owing to the high local concentration of hairpins, spatial confinement effect and production of giant DNA networks, which significantly enhanced the fluorescence signal to achieve sensitive detection of APE1 with a limit of 3.34 × 10-8 U µL-1. More importantly, the aptamer Sgc8 assembled on f-TDNs could enhance the targeting activity of the DNA structure to tumor cells, allowing it to endocytose into cells without any transfection reagents, which could achieve selective imaging of intracellular APE1 in living cells. Meanwhile, the siRNA carried by f-TDN1 could be accurately released to promote tumor cell apoptosis in the presence of endogenous target APE1, realizing effective and precise tumor therapy. Benefiting from the high specificity and sensitivity, the developed DNA nanostructures provide an excellent nanoplatform for precise cancer diagnosis and therapy.

11.
Anal Chem ; 95(8): 4077-4085, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787389

RESUMO

Herein, by directly limiting the reaction space, an ingenious three-dimensional (3D) DNA walker (IDW) with high walking efficiency is developed for rapid and sensitive detection of miRNA. Compared with the traditional DNA walker, the IDW immobilized by the DNA tetrahedral nanostructure (DTN) brings stronger kinetic and thermodynamic favorability resulting from its improved local concentration and space confinement effect, accompanied by a quite faster reaction speed and much better walking efficiency. Once traces of target miRNA-21 react with the prelocked IDW, the IDW could be largely activated and walk on the interface of the electrode to trigger the cleavage of H2 with the assistance of Mg2+, resulting in the release of amounts of methylene blue (MB) labeled on H2 from the electrode surface and the obvious decrease of the electrode signal. Impressively, the IDW reveals a conversion efficiency as high as 9.33 × 108 in 30 min with a much fast reaction speed, which is at least five times beyond that of typical DNA walkers. Therefore, the IDW could address the inherent challenges of the traditional DNA walker easily: slow walking speed and low efficiency. Notably, the IDW as a DNA nanomachine was utilized to construct a sensitive sensing platform for rapid miRNA-21 detection with a limit of detection (LOD) of 19.8 aM and realize the highly sensitive assay of biomarker miRNA-21 in the total RNA lysates of cancer cell. The strategy thus helps in the design of a versatile nucleic acid conversion and signal amplification approach for practical applications in the areas of biosensing assay, DNA nanotechnology, and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Nanoestruturas , MicroRNAs/genética , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , DNA/química , Nanoestruturas/química , Limite de Detecção
12.
Anal Chem ; 95(2): 1686-1693, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36541619

RESUMO

Due to effective tackling of the problems of aggregation-caused quenching of traditional ECL emitters, aggregation-induced electrochemiluminescence (AIECL) has emerged as a research hotspot in aqueous detection and sensing. However, the existing AIECL emitters still encounter the bottlenecks of low ECL efficiency, poor biocompatibility, and high cost. Herein, aluminum(III)-based organic nanofibrous gels (AOGs) are used as a novel AIECL emitter to construct a rapid and ultrasensitive sensing platform for the detection of Flu A virus biomarker DNA (fDNA) with the assistance of a high-speed and hyper-efficient signal magnifier, a rigid triplex DNA walker (T-DNA walker). The proposed AOGs with three-dimensional (3D) nanofiber morphology are assembled in one step within about 15 s by the ligand 2,2':6',2″-terpyridine-4'-carboxylic acid (TPY-COOH) and cheap metal ion Al3+, which demonstrates an efficient ECL response and outstanding biocompatibility. Impressively, on the basis of loop-mediated isothermal amplification-generated hydrogen ions (LAMP-H+), the target-induced pH-responsive rigid T-DNA walker overcomes the limitations of conventional single or duplex DNA walkers in walking trajectory and efficiency due to the entanglement and lodging of leg DNA, exhibiting high stability, controllability, and walking efficiency. Therefore, AOGs with excellent AIECL performance were combined with a CG-C+ T-DNA nanomachine with high walking efficiency and stability, and the proposed "on-off" ECL biosensor displayed a low detection limit down to 23 ag·µL-1 for target fDNA. Also, the strategy provided a useful platform for rapid and sensitive monitoring of biomolecules, considerably broadening its potential applications in luminescent molecular devices, clinical diagnosis, and sensing analysis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Nanofibras , Alumínio , Medições Luminescentes/métodos , DNA Viral , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , MicroRNAs/análise
13.
Anal Chem ; 94(42): 14666-14674, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36245089

RESUMO

Herein, Pt@tetraphenyl-1,3-butadiene nanocrystals (Pt@TPB NCs) with high electrochemiluminescence (ECL) efficiencies as ECL emitters were developed to construct an ultrasensitive biosensing platform for the detection of microRNA-21 (miRNA-21). Interestingly, Pt@TPB NCs not only exhibited high carrier densities and electron mobilities to achieve efficient electron-hole pair recombinations for high ECL emission but also served as coreaction accelerators of endogenous coreactant-dissolved O2 with good electrocatalytic activities to produce abundant reactive oxygen species (ROS) for facilitating the interactions between TPB NCs and ROS, which further obtain intense ECL emission. Impressively, Pt@TPB NCs with dissolved O2 as coreactants displayed high ECL efficiencies (ΦECL) of 7.83, taking the ΦECL of Ru(bpy)32+/dissolved O2 ECL system as 1. Herein, Pt@TPB NCs with strong ECL signals were used as ECL emitters to combine target-induced DNA walker amplification with high conversion efficiency for the construction of an ultrasensitive ECL biosening platform which accomplished microRNA-21 detection with a low detection limit of 83.8 aM. Therefore, the developed synergy effects in Pt@TPB NCs are expected to guide the progress of highly efficient ECL emitters for sensing analysis and disease diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Nanopartículas , MicroRNAs/análise , Técnicas Eletroquímicas , Medições Luminescentes , Espécies Reativas de Oxigênio , Limite de Detecção , Cristalização , Nanopartículas/química , DNA/química , Aceleração
14.
Anal Chem ; 94(24): 8732-8739, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678832

RESUMO

Herein, a novel tetrahedral DNA walker with four arms was engineered to travel efficiently on the 3D-tracks via catalyzed hairpin assembly autonomously, realizing the sensitive detection and activity assessment as well as intracellular imaging of apurinic/apyrimidinic endonuclease 1 (APE1). In contrast to traditional DNA walkers, the tetrahedral DNA walker with the rigid 3D framework structure and nonplanar multi-sites walking arms endowed with high collision efficiency, showing a fast walking rate and high nuclease resistance. Impressively, the initial rate of the tetrahedral DNA walker with four arms was 4.54 times faster than that of the free bipedal DNA walker and produced a significant fluorescence recovery in about 40 min, achieving a sensitive detection of APE1 with a low detection limit of 5.54× 10-6 U/µL as well as ultrasensitive intracellular APE1 fluorescence activation imaging. This strategy provides a novel DNA walker for accurate identification of low-abundance cancer biomarker and potential medical diagnosis.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , DNA/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases , Fluorescência
15.
Anal Chem ; 94(18): 6874-6881, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483064

RESUMO

In this work, a novel electrochemiluminescence (ECL) biosensor was developed for ultrasensitive detection of microRNA let-7a (miRNA let-7a) based on MnS:CdS@ZnS core-shell quantum dots (QDs) as ECL luminophores with high ECL efficiency. Impressively, compared to the CdS:Mn@ZnS QDs prepared by ionic doping with ECL efficiency of 0.87%, MnS:CdS@ZnS QDs synthesized by bimetallic clusters (Cd2Mn2O4) doping exhibited high ECL efficiency of up to 15.84% with S2O82- as cathodic coreactant due to the elimination of the dopants size mismatch and "self-purification" effect, which could achieve the surface defect passivation of MnS:CdS@ZnS QDs for effectively improving the ECL emission. Furthermore, with the help of strand displacement amplification (SDA), the trace target miRNA let-7a was able to be converted to a number of output DNA labeled with ferrocene (Fc) to construct an ultrasensitive ECL biosensor. The well-designed ECL biosensor for miRNA let-7a exhibited high stability and excellent sensitivity of a concentration variation from 10 aM to 1 nM and a low detection limit of 4.1 aM, which was further applied to the analysis of miRNA let-7a from cancer cell (MCF-7) lysate. Thus, this strategy provides a novel method to prepare high-efficient ECL emitters for the construction of ECL biosensing platforms in biological fields and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Pontos Quânticos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Medições Luminescentes/métodos , MicroRNAs/análise , Sulfetos , Compostos de Zinco
16.
Adv Sci (Weinh) ; 9(4): e2104084, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913619

RESUMO

Herein, a programmable dual-catalyst hairpin assembly (DCHA) for realizing the synchronous recycle of two catalysts is developed, displaying high reaction rate and outstanding conversion efficiency beyond traditional nucleic acid signal amplifications (NASA). Once catalyst I interacts with the catalyst II, the DCHA can be triggered to realize the simultaneous recycle of catalysts I and II to keep the highly concentrated intermediate product duplex I-II instead of the steadily decreased one in typical NASA, which can accomplish in about only 16 min and achieves the outstanding conversion efficiency up to 4.54 × 108 , easily conquering the main predicaments of NASA: time-consuming and low-efficiency. As a proof of the concept, the proposed DCHA as a high-speed and hyper-efficiency DNA signal magnifier is successfully applied in the rapid and ultrasensitive detection of miRNA-21 in cancer cell lysates, which exploits the new generation of universal strategy for the applications in biosensing assay, clinic diagnose, and DNA nanobiotechnology.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , MicroRNAs/análise , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Células HeLa , Humanos , Limite de Detecção , Células MCF-7 , MicroRNAs/genética
17.
Anal Chem ; 93(39): 13334-13341, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34553919

RESUMO

Herein, a versatile ECL biosensor was fabricated for ultrasensitive detection of microRNA-21 (miRNA-21) from cancer cells based on a novel H2O2-free electrochemiluminescence (ECL) system (luminol/dissolved oxygen/Fe@Fe2O3 nanowires). Compared with the previously reported coreaction accelerator that needed a negative potential to produce reactive oxygen species (ROS), these newly discovered Fe@Fe2O3 nanowires could generate ROS in the detection solution immediately without the application of voltage, which narrowed down the detection potential range to avoid side reactions, favoring their practical application in biological systems. Especially, the Fe@Fe2O3 nanowires could produce H• for activating dissolved oxygen into ROS to improve the ECL intensity dramatically, which initiates a novel pathway to promote the generation of ROS for the ECL system. In addition, an original strand displacement amplification coupled with strand displacement reaction (SDA-SDR) was developed to improve the conversion efficiency of the target for sensitive detection of miRNA-21. By virtue of the SDR, a quadruple quenching effect was achieved through each output DNA strand of SDA; hence, the nucleic acid signal amplification efficiency was effectively enhanced. As expected, on account of the superb activation performance of Fe@Fe2O3 nanowires and the outstanding amplification efficiency of the SDR-SDA strategy, the fabricated ECL biosensor realized ultrasensitive detection of miRNA-21 with a detection limit down to 52.5 aM. The established ECL sensing platform ushered a new route for H2O2-free detection and a promising biomarker assay method for clinical diagnosis.


Assuntos
MicroRNAs , Nanofios , Luminol , Oxigênio
18.
Anal Chem ; 92(19): 13581-13587, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32893627

RESUMO

Copper nanoclusters (Cu NCs) as emerging luminescent metal NCs are gaining increasing attention owing to the comparatively low cost and high abundance of the Cu element in nature. However, it remains challenging to manipulate the optical properties of Cu NCs. Unlike most dispersed Cu NCs, whose luminescence efficiency was restricted by nonexcited relaxation, the Cu NCs confined in a porous poly-l-cysteine (poly-l-Cys) film were generated controllably with enhanced electrochemiluminescence (ECL) by in situ electrochemical reduction. Specifically, poly-l-Cys provided a porous structure to regulate the generation of Cu NCs within its holes, which not only increased the restriction on the intramolecular vibration and rotation of the ligands but also expedited the electron transfer near the electrode surface, reflecting in an enhancement of the ECL signal and efficiency. As an application of the confined Cu NCs, an ECL biosensor with high performance was constructed skillfully for highly sensitive detection of alkaline phosphatase (ALP), which adopted Cu NCs as the ECL luminophore and poly-l-Cys as a coreaction accelerator in a novel ECL ternary system (Cu NCs/S2O82-/poly-l-Cys). Furthermore, an ingenious target amplification based on the combination of a DNA walker and click chemistry was developed to convert ALP to DNA strands efficiently, achieving great improvement in the recognition efficiency. As a result, the biosensor had a low detection limit (9.5 × 10-7 U·L-1) and a wide linear range (10-8-10-2 U·L-1) for ALP detection, which showed great promise for the detection of non-nucleic acid targets and the diagnosis of diseases.


Assuntos
Fosfatase Alcalina/sangue , Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , Nanopartículas Metálicas/química , Peptídeos/química , Fosfatase Alcalina/metabolismo , Cobre/química , Humanos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
19.
Chem Commun (Camb) ; 56(63): 9000-9003, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32638738

RESUMO

A kind of organic microcrystal, 9,10-diphenylanthracene microcrystals (DPA MCs), was developed as a novel electrochemiluminescence (ECL) coreactant accelerator to efficiently catalyze dissolved O2 for more reactive oxygen species (ROSs) generation, achieving intense ECL for a H2O2-free luminol system. Moreover, based on this ternary ECL system, a signal "off-on" ECL biosensor for microRNA-21 (miRNA-21) detection was constructed combining a sensitive target recycling amplification strategy and an enzyme-mediated recycling strand displacement reaction (RSDR).


Assuntos
Técnicas Biossensoriais/métodos , Luminol/química , MicroRNAs/análise , Antracenos/química , Catálise , Linhagem Celular Tumoral , Humanos , Medições Luminescentes , Técnicas de Amplificação de Ácido Nucleico , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
20.
Anal Chem ; 92(16): 11044-11052, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32677426

RESUMO

Herein, an amphiphilic perylene derivative (denoted as PTC-DEDA) was explored as DNA intercalators endowed with an enhanced affinity and intense electrochemiluminescence (ECL) to construct a target-induced DNA hydrogel biosensing platform for the sensitive detection of microRNA let-7a (miRNA let-7a). Specifically, the DNA hydrogel with numerous dendritic DNA structures was in situ generated via a target-induced nonlinear hybrid chain reaction in the presence of miRNA let-7a, which possessed a large loading capacity to entrap massive DNA intercalators. Then, the PTC-DEDA with positive charges could easily intercalate into the DNA grooves due to the inherent amphipathic structure, achieving a strong ECL signal. Using the proposed PTC-DEDA as both DNA intercalators and ECL emitters, the DNA hydrogel biosensing platform exhibited a high stability and an excellent sensitivity for miRNA let-7a, with a desirable linear range (10 fM to 10 nM) and a low detection limit (1.49 fM). Significantly, the work provides a potential alternative to develop simple and high-efficiency ECL platforms for biochemical analysis applications.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Hidrogéis/química , Substâncias Intercalantes/química , MicroRNAs/análise , Linhagem Celular Tumoral , Ouro/química , Humanos , Limite de Detecção , Substâncias Luminescentes/química , Nanopartículas de Magnetita/química , Paládio/química , Perileno/análogos & derivados , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA