Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Vaccines (Basel) ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140230

RESUMO

(1) Background: Understanding how advanced cancers evade host innate and adaptive immune opponents has led to cancer immunotherapy. Among several immunotherapeutic strategies, the reversal of immunosuppression mediated by regulatory T cells in the tumor microenvironment (TME) using blockers of immune-checkpoint signaling in effector T cells is the most successful treatment measure. Furthermore, agonists of T cell costimulatory molecules (CD40, 4-1BB, OX40) play an additional anti-cancer role to that of checkpoint blocking in combined therapy and serve also as adjuvant/neoadjuvant/induction therapy to conventional cancer treatments, such as tumor resection and radio- and chemo- therapies. (2) Methods and Results: In this study, novel agonistic antibodies to the OX40/CD134 ectodomain (EcOX40), i.e., fully human bivalent single-chain variable fragments (HuscFvs) linked to IgG Fc (bivalent HuscFv-Fcγ fusion antibodies) were generated by using phage-display technology and genetic engineering. The HuscFvs in the fusion antibodies bound to the cysteine-rich domain-2 of the EcOX40, which is known to be involved in OX40-OX40L signaling for NF-κB activation in T cells. The fusion antibodies caused proliferation, and increased the survival and cytokine production of CD3-CD28-activated human T cells. They showed enhancement trends for other effector T cell activities like granzyme B production and lysis of ovarian cancer cells when added to the activated T cells. (3) Conclusions: The novel OX40 agonistic fusion antibodies should be further tested step-by-step toward their safe use as an adjunctive non-immunogenic cancer immunotherapeutic agent.

7.
Front Cell Infect Microbiol ; 12: 882608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558100

RESUMO

Trichinella spiralis, a tissue-dwelling helminth, causes human trichinellosis through ingestion of undercooked meat containing the parasite's infective larvae. However, benefits from T. spiralis infection have been documented: reduction of allergic diseases, inhibition of collagen-induced arthritis, delay of type 1 diabetes progression, and suppression of cancer cell proliferation. Since conventional cancer treatments have limited and unreliable efficacies with adverse side effects, novel adjunctive therapeutic agents and strategies are needed to enhance the overall treatment outcomes. This study aimed to validate the antitumor activity of T. spiralis infective larval extract (LE) and extricate the parasite-derived antitumor peptide. Extracts of T. spiralis infective larvae harvested from striated muscles of infected mice were prepared and tested for antitumor activity against three types of carcinoma cells: hepatocellular carcinoma HepG2, ovarian cancer SK-OV-3, and lung adenocarcinoma A549. The results showed that LE exerted the greatest antitumor effect on HepG2 cells. Proteomic analysis of the LE revealed 270 proteins. They were classified as cellular components, proteins involved in metabolic processes, and proteins with diverse biological functions. STRING analysis showed that most LE proteins were interconnected and played pivotal roles in various metabolic processes. In silico analysis of anticancer peptides identified three candidates. Antitumor peptide 2 matched the hypothetical protein T01_4238 of T. spiralis and showed a dose-dependent anti-HepG2 effect, not by causing apoptosis or necrosis but by inducing ROS accumulation, leading to inhibition of cell proliferation. The data indicate the potential application of LE-derived antitumor peptide as a complementary agent for human hepatoma treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trichinella spiralis , Triquinelose , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Helminto/metabolismo , Humanos , Larva , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Peptídeos/metabolismo , Peptídeos/farmacologia , Extratos Vegetais , Proteômica
8.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34908139

RESUMO

Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Receptor ErbB-2/imunologia , Anticorpos de Domínio Único , Anticorpos Monoclonais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Técnicas de Visualização da Superfície Celular , Detecção Precoce de Câncer , Feminino , Humanos , Anticorpos de Domínio Único/genética
9.
Molecules ; 26(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34770845

RESUMO

Proviral integration site of Moloney virus-2 (PIM2) is overexpressed in multiple human cancer cells and high level is related to poor prognosis; thus, PIM2 kinase is a rational target of anti-cancer therapeutics. Several chemical inhibitors targeting PIMs/PIM2 or their downstream signaling molecules have been developed for treatment of different cancers. However, their off-target toxicity is common in clinical trials, so they could not be advanced to official approval for clinical application. Here, we produced human single-chain antibody fragments (HuscFvs) to PIM2 by using phage display library, which was constructed in a way that a portion of phages in the library carried HuscFvs against human own proteins on their surface with the respective antibody genes in the phage genome. Bacterial derived-recombinant PIM2 (rPIM2) was used as an antigenic bait to fish out the rPIM2-bound phages from the library. Three E. coli clones transfected with the HuscFv genes derived from the rPIM2-bound phages expressed HuscFvs that bound also to native PIM2 from cancer cells. The HuscFvs presumptively interact with the PIM2 at the ATP binding pocket and kinase active loop. They were as effective as small chemical drug inhibitor (AZD1208, which is an ATP competitive inhibitor of all PIM isoforms for ex vivo use) in inhibiting PIM kinase activity. The HuscFvs should be engineered into a cell-penetrating format and tested further towards clinical application as a novel and safe pan-anti-cancer therapeutics.


Assuntos
Engenharia Genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Recombinantes , Anticorpos de Cadeia Única/farmacologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Técnicas de Visualização da Superfície Celular , Cromatografia em Gel , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Relação Estrutura-Atividade
10.
Vaccines (Basel) ; 9(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34452018

RESUMO

HIV-1 progeny are released from infected cells as immature particles that are unable to infect new cells. Gag-Pol polyprotein dimerization via the reverse transcriptase connection domain (RTCDs) is pivotal for proper activation of the virus protease (PR protein) in an early event of the progeny virus maturation process. Thus, the RTCD is a potential therapeutic target for a broadly effective anti-HIV agent through impediment of virus maturation. In this study, human single-chain antibodies (HuscFvs) that bound to HIV-1 RTCD were generated using phage display technology. Computerized simulation guided the selection of the transformed Escherichia coli-derived HuscFvs that bound to the RTCD dimer interface. The selected HuscFvs were linked molecularly to human-derived-cell-penetrating peptide (CPP) to make them cell-penetrable (i.e., become transbodies). The CPP-HuscFvs/transbodies produced by a selected transformed E. coli clone were tested for anti-HIV-1 activity. CPP-HuscFvs of transformed E. coli clone 11 (CPP-HuscFv11) that presumptively bound at the RTCD dimer interface effectively reduced reverse transcriptase activity in the newly released virus progeny. Infectiousness of the progeny viruses obtained from CPP-HuscFv11-treated cells were reduced by a similar magnitude to those obtained from protease/reverse transcriptase inhibitor-treated cells, indicating anti-HIV-1 activity of the transbodies. The CPP-HuscFv11/transbodies to HIV-1 RTCD could be an alternative, anti-retroviral agent for long-term HIV-1 treatment.

11.
Front Immunol ; 12: 676558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135902

RESUMO

Allergen-specific-immunotherapy (ASIT) can cause long-term resolution of allergic diseases, reduces drug use and chances of new allergen sensitization. Nevertheless, therapeutic vaccine and data on ASIT efficacy for cockroach (CR) allergy are relatively scarce. In this study, efficacy and mechanism of a novel intranasal vaccine consisting of liposome (L)-entrapped mixture of American CR (Periplaneta americana) major allergen (Per a 9) and immunosuppressive protein of Brugia malayi nematode named transforming growth factor-beta homologue (TGH) in treatment of CR allergy were investigated along with two other vaccines (L-Per a 9 alone and L-TGH alone). All three vaccines could reduce pathogenic type 2 response and lung immunopathology in the vaccines-treated CR-allergic mice, but by different mechanisms. L-Per a 9 caused a deviation of the pathogenic type 2 to type 1 response (IFN-γ-upregulation), whereas the L-(TGH + Per a 9) and L-TGH generated regulatory immune responses including up-expression of immunosuppressive cytokine genes and increment of serum adenosine and lung indoleamine-2,3-dioxygenase-1 which are signatures of regulatory T cells (Tregs) and tolerogenic dendritic cells, respectively. The L-(TGH + Per a 9) should be further evaluated towards clinical application, as this vaccine has a propensity to induce broadly effective therapeutic effects for inhalant allergies.


Assuntos
Alérgenos/imunologia , Arginina Quinase/imunologia , Brugia Malayi/imunologia , Dessensibilização Imunológica/métodos , Hipersensibilidade/imunologia , Hipersensibilidade/prevenção & controle , Imunossupressores/imunologia , Proteínas de Insetos/imunologia , Periplaneta/imunologia , Fator de Crescimento Transformador beta/imunologia , Vacinas/imunologia , Administração Intranasal , Alérgenos/sangue , Animais , Arginina Quinase/sangue , Células Dendríticas/imunologia , Modelos Animais de Doenças , Hipersensibilidade/sangue , Hipersensibilidade/parasitologia , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/sangue , Resultado do Tratamento , Vacinas/administração & dosagem
12.
Front Microbiol ; 11: 562768, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101238

RESUMO

Hand, foot, and mouth disease (HFMD) is a highly contagious disease that usually affects infants and young children (<5 years). HFMD outbreaks occur frequently in the Asia-Pacific region, and these outbreaks are associated with enormous healthcare and socioeconomic burden. There is currently no specific antiviral agent to treat HFMD and/or the severe complications that are frequently associated with the enterovirus of serotype EV71. Therefore, the development of a broadly effective and safe anti-enterovirus agent is an existential necessity. In this study, human single-chain antibodies (HuscFvs) specific to the EV71-internal capsid protein (VP4) were generated using phage display technology. VP4 specific-HuscFvs were linked to cell penetrating peptides to make them cell penetrable HuscFvs (transbodies), and readily accessible to the intracellular target. The transbodies, as well as the original HuscFvs that were tested, entered the enterovirus-infected cells, bound to intracellular VP4, and inhibited replication of EV71 across subgenotypes A, B, and C, and coxsackieviruses CVA16 and CVA6. The antibodies also enhanced the antiviral response of the virus-infected cells. Computerized simulation, indirect and competitive ELISAs, and experiments on cells infected with EV71 particles to which the VP4 and VP1-N-terminus were surface-exposed (i.e., A-particles that don't require receptor binding for infection) indicated that the VP4 specific-antibodies inhibit virus replication by interfering with the VP4-N-terminus, which is important for membrane pore formation and virus genome release leading to less production of virus proteins, less infectious virions, and restoration of host innate immunity. The antibodies may inhibit polyprotein/intermediate protein processing and cause sterically strained configurations of the capsid pentamers, which impairs virus morphogenesis. These antibodies should be further investigated for application as a safe and broadly effective HFMD therapy.

13.
Am J Cancer Res ; 10(2): 674-687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195035

RESUMO

Since the prognosis for children with high-risk osteosarcoma (OS) remains suboptimal despite intensive multi-modality therapies, there is a clear and urgent need for the development of targeted therapeutics against these refractory malignancies. Chimeric antigen receptor (CAR) modified T cells can meet this need by utilizing the immune system's potent cytotoxic mechanisms against tumor specific antigen targets with exquisite specificity. Since OS highly expresses the GD2 antigen, a viable immunotherapeutic target, we sought to assess if CAR modified T cells targeting GD2 could induce cytotoxicity against OS tumor cells. We demonstrated that the GD2 CAR modified T cells were highly efficacious for inducing OS tumor cell death. Interestingly, the OS cells were induced to up-regulate expression of PD-L1 upon interaction with GD2 CAR modified T cells, and the specific interaction induced CAR T cells to overexpress the exhaustion marker PD-1 along with increased CAR T cell apoptosis. To further potentiate CAR T cell killing activity against OS, we demonstrated that suboptimal chemotherapeutic treatment with doxorubicin can synergize with CAR T cells to effectively kill OS tumor cells.

14.
Curr Protein Pept Sci ; 21(2): 124-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31364514

RESUMO

Allergic diseases are assuming increasing trend of prevalence worldwide. The diseases confer increasing demand on medical and healthcare facilities. Patients with allergies have poor quality of life and impaired cognition. Adult patients have subpar working efficiency while afflicted children are less effective at school, often have school absenteeism and need more attention of their caregivers. All of them lead to negative socio-economic impact. This narrative review focuses on cockroach allergy including currently recognized cockroach allergens, pathogenic mechanisms of allergy, componentresolved diagnosis and allergen-specific immunotherapy, particularly the component-resolved immunotherapy and the molecular mechanisms that bring about resolution of the chronic airway inflammation.


Assuntos
Alérgenos/imunologia , Baratas/imunologia , Hipersensibilidade , Animais , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Hipersensibilidade/terapia
15.
Cells ; 8(7)2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277291

RESUMO

Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.


Assuntos
Autofagia , Doença , Desenho de Fármacos , Tratamento Farmacológico/métodos , Humanos , Medicina Preventiva/métodos
16.
J Cell Biochem ; 120(10): 18077-18087, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172597

RESUMO

Most patients suffering from non-small cell lung cancer (NSCLC) have epidermal growth factor receptor (EGFR) overexpression. Currently, EGFR tyrosine kinase inhibitors (TKIs) that act as the ATP-analogs and monoclonal antibodies (MAbs) to EGFR-ectodomain that block intracellular signaling are used for the treatment of advanced NSCLC. Unfortunately, adverse effects due to the TKI off-target and drug resistance occur in a significant number of the treated patients while some NSCLC genotypes do not respond to the therapeutic MAbs. Thus, a more effective remedy for the treatment of EGFR-overexpressed cancers is deemed necessary. In this study, VH/VH H displayed-phage clones that are bound to recombinant EGFR-TK were fished-out from a humanized-camel VH/VH H phage display library. VH/VH H of three phage-infected Escherichia coli clones (VH18, VH H35, and VH36) were linked molecularly to nonaarginine (R9) for making them cell penetrable. R9-VH18, R9-VH H35, and R9-VH36 were cytotoxic to human adenocarcinomic alveolar basal epithelial cells (A549) at the fifty percent inhibitory concentration (IC50 ) 0.181 ± 0.132, 0.00961 ± 0.00516, and 0.00996 ± 0.00752 µM, respectively, which were approximately 1000-fold more effective than small molecular TKIs. R9-VH18 and R9-VH36 also delayed cancer cell migration in a scratch-wound assay. Computerized homology modeling and intermolecular docking revealed that VH18 and VH H35 used CDR3 to interact with EGFR-TK residues close to the catalytic site, which might sterically hinder the ATP-binding of the TK; VH36 used CDR2 to bind at the asymmetric dimerization surface, which might disrupt EGFR dimerization leading to inhibition of intracellular signaling. The humanized-cell penetrable nanobodies have a high potential for developing further towards a clinical application.


Assuntos
Adenocarcinoma de Pulmão/patologia , Movimento Celular , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Anticorpos de Domínio Único/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mapeamento de Epitopos , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular
17.
Front Immunol ; 9: 2478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483247

RESUMO

Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.


Assuntos
Antivirais/uso terapêutico , Condiloma Acuminado/imunologia , Neoplasias Orofaríngeas/imunologia , Papillomaviridae/fisiologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/imunologia , Adolescente , Condiloma Acuminado/prevenção & controle , Desenho de Fármacos , Desenvolvimento de Medicamentos , Feminino , Humanos , Programas de Imunização , Masculino , Neoplasias Orofaríngeas/prevenção & controle , Infecções por Papillomavirus/tratamento farmacológico , Neoplasias do Colo do Útero/prevenção & controle , Vacinação
18.
Front Immunol ; 9: 1803, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147687

RESUMO

Ebola virus (EBOV), a member of the family Filoviridae, is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.


Assuntos
Antivirais/uso terapêutico , Desenho de Fármacos , Desenvolvimento de Medicamentos , Vacinas contra Ebola/imunologia , Ebolavirus/genética , Ebolavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Animais , Antivirais/farmacologia , Ebolavirus/fisiologia , Engenharia Genética , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos
19.
Arch Virol ; 162(3): 677-686, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27858289

RESUMO

Microtubule (MT) and dynein motor proteins facilitate intracytoplasmic transport of cellular proteins. Various viruses utilize microtubules and dynein for their movement from the cell periphery to the nucleus. The aim of this study was to investigate the intracellular transport of porcine circovirus type 2 (PCV2) via 8 kDa dynein light chain (DYNLL1, LC8) subunit along the MTs. At 20 µM, vinblastine sulfate inhibited tubulin polymerization resulting in disorganized morphology. In PCV2-infected PK-15 cells, double immunofluorescent labeling showed that the viral particles appeared at the cell periphery and gradually moved to the microtubule organization center (MTOC) at 0-12 hour post inoculation (hpi) while at 20-24 hpi they accumulated in the nucleus. Co-localization between DYNLL1 and PCV2 particles was observed clearly at 8-12 hpi. At 20-24 hpi, most aggregated tubulin had a paracrystalline appearance at the MTOC around the nucleus in vinblastine-treated, PCV2-infected PK-15 cells. Between 12 and 24 hpi, PCV2 particles were still bound to DYNLL1 before they were translocated to the nucleus in both treatments, indicating that vinblastine sulfate had no effect on the protein-protein co-localization. The DYNLL1 binding motif, LRLQT, was found near the C-terminus of PCV2 capsid protein (Cap). Molecular docking analysis confirmed the specific interaction between these residues and the cargo binding site on DYNLL1. Our study clearly demonstrated that dynein, in particular DYNLL1, mediated PCV2 intracellular trafficking. The results could explain, at least in part, the viral transport mechanism by DYNLL1 via MT during PCV2 infection.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/metabolismo , Microtúbulos/virologia , Doenças dos Suínos/virologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Infecções por Circoviridae/genética , Infecções por Circoviridae/metabolismo , Infecções por Circoviridae/virologia , Circovirus/genética , Dineínas/genética , Dineínas/metabolismo , Interações Hospedeiro-Patógeno , Microtúbulos/metabolismo , Ligação Proteica , Transporte Proteico , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/metabolismo
20.
Biochem Biophys Res Commun ; 479(2): 245-252, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27638305

RESUMO

A direct acting anti-Ebola agent is needed. VP40, a conserved protein across Ebolavirus (EBOV) species has several pivotal roles in the virus life cycle. Inhibition of VP40 functions would lessen the virion integrity and interfere with the viral assembly, budding, and spread. In this study, cell penetrable human scFvs (HuscFvs) that bound to EBOV VP40 were produced by phage display technology. Gene sequences coding for VP40-bound-HuscFvs were subcloned from phagemids into protein expression plasmids downstream to a gene of cell penetrating peptide, i.e., nonaarginine (R9). By electron microscopy, transbodies from three clones effectively inhibited egress of the Ebola virus-like particles from human hepatic cells transduced with pseudo-typed-Lentivirus particles carrying EBOV VP40 and GP genes. Computerized simulation indicated that the effective HuscFvs bound to multiple basic residues in the cationic patch of VP40 C-terminal domain which are important in membrane-binding for viral matrix assembly and virus budding. The transbodies bound also to VP40 N-terminal domain and L domain peptide encompassed the PTAPPEY (WW binding) motif, suggesting that they might confer VP40 function inhibition through additional mechanism(s). The generated transbodies are worthwhile tested with authentic EBOV before developing to direct acting anti-Ebola agent for preclinical and clinical trials.


Assuntos
Ebolavirus/efeitos dos fármacos , Anticorpos de Cadeia Única/farmacologia , Proteínas da Matriz Viral/imunologia , Liberação de Vírus/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/ultraestrutura , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Ebolavirus/fisiologia , Ebolavirus/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/ultraestrutura , Neoplasias Hepáticas/virologia , Microscopia Eletrônica de Varredura , Modelos Moleculares , Biblioteca de Peptídeos , Ligação Proteica , Domínios Proteicos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion/efeitos dos fármacos , Vírion/fisiologia , Vírion/ultraestrutura , Liberação de Vírus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA